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Abstract

In this paper, the Process Hitting (PH), a recently introduced framework to
model concurrent processes, is introduced. It is notably suitable to model Bi-
ological Regulatory Networks (BRNs) with partial knowledge of cooperations
by defining the most permissive dynamics. On the other hand, the qualitative
modeling of BRNs has been widely addressed using René Thomas’ formalism,
which is also depicted. A translation from PH to Thomas’ representation of
BRNs is finally presented. It relies on an analysis of all regulations to infer the
Interaction Graph, then the possible parametrizations.

1 Introduction

As regulatory phenomena play a crucial role in biological systems, they need
to be studied accurately. Biological Regulatory Networks (BRNs) consist in
sets of either positive or negative mutual effects between the components.
Besides continuous models of physicists, often designed through systems of
ordinary differential equations, a discrete modeling approach was initiated by
René Thomas in 1973 [16] allowing the representation of the different levels
of a component, such as concentration or expression levels, as integer values.
Nevertheless, these dynamics can be precisely established only with regard
to some kind of “focal points”, related to as Thomas’ parameters, indicating
the evolutionary tendency of each component. This modeling has motivated
numerous works (see [12, 9, 15, 1]), and other approaches related to our work,
which rely on temporal logic [7] and constraint programming [4, 5], aim at
determining models consistent with partial data on the regulatory structure and
dynamics. While the formal checking of dynamical properties is often limited
to small networks because of the state graph explosion, the main drawback of
this framework is the difficulty to specify Thomas’ parameters, especially for
large networks.



In order to address the formal checking of dynamical properties within
very large BRNs, we recently introduced in [10] a new formalism, named the
“Process Hitting” (PH), to model concurrent systems having components with
a few qualitative levels. A PH describes, in an atomic manner, the possible
evolutions of a “process” (representing one component at one level) triggered
by the hit of at most one other “process” in the system. This particular structure
makes the formal analysis of BRNs with hundreds of components tractable
[11]. PH is suitable, according to the precision of this information, to model
BRNs with different levels of abstraction by capturing the most general dy-
namics.

In [6] we showed that starting from one PH model, it is possible to find
the underlying interactions, then the underlying Thomas’ parameters. This
method relies on an exhaustive search of the interactions between components
of the PH model, and an enumeration of the (possibly large) nesting set of
valid parameters, so that the resulting dynamics are ensured to respect the PH
dynamics, i.e. no spurious transitions are made possible. The first benefit of
this approach is that it makes possible the construction refining of BRNs with a
partial and progressively brought knowledge in PH, while being able to export
such models in the Thomas’ framework. Our second contribution is to enhance
the knowledge of the formal links between both modelings. The method can
be applied to large BRNs (up to 40 components).

2 Frameworks

2.1 The Process Hitting framework

A Process Hitting (PH) (Def. 1) gathers a finite number of concurrent processes
grouped into a finite set of sorts. A sort stands for a component of the system
while a process, which belongs to a unique sort, stands for one of its expression
levels. A process is noted ai where a is the sort and i is the process identifier
within the sort a. At any time, exactly one process of each sort is present; a
state of the PH corresponds to such a set of processes.

The concurrent interactions between processes are defined by a set of ac-
tions. Actions describe the replacement of a process by another of the same
sort conditioned by the presence of at most one other process in the current
state. An action is denoted by ai → bj � bk, which is read as “ai hits bj to
make it bounce to bk”, where ai, bj , bk are processes of sorts a and b, called
respectively hitter, target and bounce of the action.

Definition 1 (Process Hitting) A Process Hitting is a triple (Σ, L,H), where:

• Σ = {a, b, . . . } is the finite set of sorts;



• L =
∏
a∈Σ La is the set of states with La = {a0, . . . , ala} the finite

set of processes of sort a ∈ Σ and la a positive integer, with a 6= b ⇒
La ∩ Lb = ∅;

• H = {ai → bj � bk ∈ La×Lb×Lb | (a, b) ∈ Σ2 ∧ bj 6= bk ∧ a = b⇒
ai = bj} is the finite set of actions.

Given a state s ∈ L, the process of sort a ∈ Σ present in s is denoted by s[a].
An action h = ai → bj � bk ∈ H is playable in s ∈ L if and only if s[a] = ai
and s[b] = bj . In such a case, (s ·h) stands for the state resulting from the play
of the action h in s, with (s · h)[b] = bk and ∀c ∈ Σ, c 6= b, (s · h)[c] = s[c].

Modeling cooperation. As described in [10], the cooperation between pro-
cesses to make another process bounce can be expressed in PH by building a
cooperative sort. Fig. 1 shows an example of a cooperative sort bc between
sorts b and c, defined with 4 processes (one for each sub-state of the presence
of processes b1 and c1). For the sake of clarity, processes of bc are indexed
using the sub-state they represent. Hence, bc01 represents the sub-state 〈b0, c1〉,
and so on. Each process of sort b and c hit bc, which makes it bounce to the
process reflecting the status of the sorts b and c (e.g., b1 → bc00 � bc10 and
b1 → bc01 � bc11). Then, to represent the cooperation between processes b1
and c1, the process bc11 hits a1 to make it bounce to a2 instead of independent
hits from b1 and c1. The same cooperative sort is used to make b0 and c0

cooperate to hit a1 and make it bounce to a0.

Example 1 Fig. 1 represents a PH (Σ, L,H) with Σ = {a, b, c, bc}, and:

La = {a0, a1, a2}, Lb = {b0, b1},
Lbc = {bc00, bc01, bc10, bc11}, Lc = {c0, c1}.

This example models a BRN where the component a has three qualitative
levels, components b and c are Boolean and bc is a cooperative sort. In this
BRN, a inhibits b at level 2 while b and c activate a with independent actions
(e.g. b0 → a2 � a1) or through the cooperative sort bc (e.g. bc11 → a1 � a2).
Indeed, the reachability of a2 and a0 is conditioned by a cooperation of b and
c, as explained above.

A Process Hitting model can be obtained from the literature or from a BRN
as described in [10]. In both methods, the identification of interactions allows
to define the set of actions leading to the desired dynamics, but an under- or
over-approximation can also be built if the interactions are not precisely known
(by adding or removing all actions allowing a given behavior). This can be
used especially in cases where a cooperative sort cannot be built because of a
lack of information.
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Figure 1: A PH example with four sorts: three components (a, b and c) and a
cooperative sort (bc). Actions targeting processes of a are in thick lines.

2.2 Thomas’ modeling

Thomas’ formalism, here inspired by [13, 3], lies on two complementary de-
scriptions of the system. First, the Interaction Graph (IG) models the structure
of the system by defining the components’ mutual influences. Its nodes rep-
resent components, while its edges labeled with a threshold stand for either
positive or negative interactions (Def. 2); la denotes the maximum level of a
component a.

Definition 2 (Interaction Graph) An Interaction Graph (IG) (Γ, E+, E−) is a
triple where:

• Γ is a finite number of components,

• E+ (resp. E−) ⊂ {a t−→ b | a, b ∈ Γ ∧ t ∈ [1; la]} is the set of positive
(resp. negative) regulations between two nodes, labeled with a threshold.

A regulation from a to b is unique, i.e. if a t−→ b ∈ E+ (resp. E−), then there

is no regulation a t′−→ b in E− (resp. E+), and no other regulation a t′′−→ b in
E+ (resp. E−) with t′′ 6= t.

For an interaction of the IG to take place, the expression level of its head com-
ponent has to be higher than its threshold; otherwise, the opposite influence is
expressed. For any component a ∈ Γ, Γ−1(a) is the set of its regulators:

Γ−1(a) = {b ∈ Γ | ∃b t−→ a ∈ E+ ∪ E−} .



A state s of an IG (Γ, E+, E−) is an element in
∏
a∈Γ[0; la] and s[a] refers to

the level of component a in s.
The specificity of Thomas’ approach lies in the use of discrete parameters

to represent focal level intervals (Def. 3). The use of intervals instead of single
values for parameters allows a wider range of expressiveness, by allowing
behaviors impossible to define with single values.

Definition 3 (Discrete parameter Kx,A,B and Parametrization K) Let x ∈
Γ be a given component and A (resp. B)⊂ Γ−1(x) a set of its activators (resp.
inhibitors), such thatA∪B = Γ−1(x) andA∩B = ∅. The discrete parameter
Kx,A,B = [i; j] is a non-empty interval so that 0 ≤ i ≤ j ≤ lx. With regard
to the dynamics, x will tend towards Kx,A,B in the states where its activators
(resp. inhibitors) are the regulators in setA (resp.B), except in the case where
x ∈ Kx,A,B for which it does not evolve.
The complete map K = (Kx,A,B)x,A,B of discrete parameters for an IG is
called a parametrization of this IG.

At last, dynamics are defined in BRN in a unitary and asynchronous way:
from a given state s, a transition to another state s′ is possible provided that
only one component a will evolve of exactly one level towards Ka,A,B , where
A (resp. B) is the set of activators (resp. inhibitors) of a in s, provided that
a 6∈ Ka,A,B in s.

Example 2 Fig. 2(left) represents the Interaction Graph (Γ, E+, E−) with
Γ = {a, b, c}, and:

E+ = {b 1−→ a, c
1−→ a} E− = {a 2−→ b} .

In particular, Γ−1(a) = {b, c}. Fig. 2(right) gives a possible parametrization
of this IG. In this BRN, the following transitions are possible:

〈a0, b1, c1〉 → 〈a1, b1, c1〉 → 〈a2, b1, c1〉 → 〈a2, b0, c1〉 → 〈a1, b0, c1〉,

where ai is the component a at level i.

3 BRN Inference

This section focuses on the inference of a complete BRN with Thomas’ pa-
rameters from a given PH.

In order to infer a BRN, one has to find the Interaction Graph (IG) first,
as some constraints on the parametrization rely on it. Inferring the IG is an
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Figure 2: (left) IG example. Regulations are represented by the edges labeled
with their sign and threshold. For instance, the edge from b to a is labeled
“1+”, which stands for: b 1−→ a ∈ E+. (right) One admissible parametrization
of the left IG.

abstraction step which consists, from atomistic actions of a PH, in determining
the global influence of every component on each of its successors.

Then, given the IG inferred from a PH, one can find the discrete parameters
that model the behavior of the studied PH. As some parameters may remain
undetermined, another step allows to enumerate all parametrizations compati-
ble with the inferred parameters.

3.1 Interaction Graph inference

This step assumes that the studied PH defines two types of sorts: the sorts
corresponding to BRN components, which will appear in the IG, and the co-
operative sorts, as defined in Subsect. 2.1. The identification of these two sets
of sorts relies on the observation of their possible behavior, which in both cases
observe some rules, and can be automated. For instance, given the definition
of cooperative sorts, if the actions hitting a sort lead to a unique fixed point
for any configuration of its predecessors, then we can deduce that this sort is
a cooperative sort. Conversely, because of the BRN dynamics explained in
Subsect. 2.2, if all actions hitting a sort make its processes bounce at most one
level away (e.g. if a1 can bounce to a0 or a2 but not to a3), then this sort is
likely to correspond to a BRN component.

Inferring global influences of a predecessor b on a component a requires to
find “local influences” from this predecessor first, by considering a given state
of the PH and changing only the active process of b. The aim is to compare the
set of processes towards which the component a will evolve, for each active
process of b, leaving the active process of all the other sorts unchanged. Indeed,
if after increasing the level of b, i.e. activating a higher process of b, we notice
that a tends to reach a higher (resp. lower) level, we can then deduce that b
activates (resp. inhibits) a in this selected state. Of course, only predecessors
of a have to be considered.



This has to be observed on every possible state in order to infer a local
influence. Indeed, if all local influences of b on a are the same (activations or
inhibitions) we can deduce that the global influence of b on a is also the same,
and the related threshold is the lowest level of b for which we can observe such
an influence. An unsigned edge with no threshold is inferred if two different
local influences are found, or in other particular cases (when a behavior cannot
be represented as a BRN).

Example 3 Consider, in the PH of Fig. 1, the sub-state σ = 〈b0, c0, bc00〉 of
predecessors of a. In this sub-state, a can be hit by the following actions:

Hσa = {b0 → a2 � a1, c0 → a2 � a1, bc00 → a1 � a0} .

Thus, if a evolves, it will eventually reach process a0. But if a higher process
of b is activated, that is, b1 instead of b0, thus considering the sub-state σ′ =
〈b1, c0, bc10〉, then a can be hit by the two following actions:

Hσ′
a = {b1 → a0 � a1, c0 → a2 � a1} ,

and will eventually reach process a1.
Therefore, in this sub-state of predecessors of a, b locally activates a. Fur-

thermore, if this analysis is carried for all possible sub-states of predecessors
of a, only local activations are found, thus giving: b 1−→ a ∈ E+.

After applying this method to all pairs of influence, the IG given in Fig. 2
is inferred.

3.2 Parameters inference

This subsection presents some results related to the inference of independent
discrete parameters from a given PH, equivalent to those presented in [10].
We suppose in the following that the considered PH is well-formed for pa-
rameters inference, i.e. its inferred IG does not contain any unsigned edge,
and in each sort, all processes activating (resp. inhibiting) another component
share the same behavior. Let Ka,A,B be the parameter we want to infer for a
given component a ∈ Γ, and A ⊂ Γ−1(a) (resp. B ⊂ Γ−1(a)) a set of its
activators (resp. inhibitors). This inference, as for the IG inference, relies on
the search of processes of a towards which it will eventually evolve for the
given configuration A,B of its regulators.

For each sort b ∈ Γ−1(a), we define a context that contains all processes
of b activating (resp. inhibiting) a if b ∈ A (resp. B). From all contexts of
all predecessors of a, we create a global context CA,B that represents the
configuration A,B (including the cooperative sorts involved). The parameter
Ka,A,B specifies towards which values a eventually evolves as long as the



configuration A,B holds, which can now be computed by considering the
dynamics of a in the global context CA,B .

Example 4 Consider the PH of Fig. 1, from which the IG of Fig. 2 is inferred.
Inferring the parameter Ka,{b,c},∅ requires to understand the behavior of a
in the sub-state 〈b1, c1, bc11〉. In this sub-state, a tends to eventually reach
process a2; thus, we can deduce the parameter: Ka,{b,c},∅ = [2; 2]. Inferring
all parameters leads to the complete parametrization given in Fig. 2.

3.3 Admissible parametrizations enumeration

The previous inference step may leave several parameters undetermined, due to
missing cooperations or behaviors impossible to represent in a BRN. If it is not
possible to change the PH model in order to remove these inconclusive cases,
one can perform a last step to enumerate all valid values for each parameter that
could not be inferred given the above results. We consider that a parameter
is valid if any transition it involves in the resulting BRN is allowed by the
studied PH by actions that represent this behavior. We also add some biological
constraints on the whole parametrizations, given in [3]. These constraints lead
to a family of admissible parametrizations which we can enumerate and are
ensured to observe a coherent behavior that is included in the original PH.

Answer Set Programming (ASP) [2] turns out to be effective for the enu-
merative searches developed in this paper, as it efficiently tackles the inherent
complexity of the models we use, thus allowing an efficient execution of the
formal tools developed. Furthermore, ASP finds a particularly interesting
application in the research of admissible parametrizations regarding the prop-
erties presented above, as this enumeration can be naturally formulated by
using of aggregates and constraints.

3.4 Implementation

The inference method described in this paper has been implemented as a tool
named ph2thomas, as part of PINT1, a library gathering PH related tools.
Our implementation mainly consists of ASP programs that are solved using
Clingo2.

In the previous sections, the methods and results are illustrated on a toy
example considered as a very small network containing 3 components (a, b and
c). But our approach can also successfully handle large PH models of BRNs
found in the literature such as an ERBB receptor-regulated G1/S transition
model from [14] which contains 20 components, and a T-cells receptor model

1Available at http://process.hitting.free.fr
2Available at http://potassco.sourceforge.net

http://process.hitting.free.fr
http://potassco.sourceforge.net


from [8] which contains 40 components3. For each model, IG and parameters
inferences are performed together in less than a second on a standard desktop
computer.

4 Conclusion

This work establishes the abstraction relationship between PH, which is more
abstract and allows incomplete knowledge on cooperations, and Thomas’ ap-
proach for qualitative BRN modeling. This motivates the concretization of PH
models into a set of compatible Thomas’ models in order to benefit from the
complementary advantages of these two formal frameworks and extract some
global information about the influences between components.

As an extension of the present work, we plan to explore new semantics of
BRNs to be able to tackle influences currently represented by unsigned edges.
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