Towards the analysis and inference of large biological models

Maxime FOLSCHETTE, Morgan MAGNIN maxime.folschette | morgan.magnin @irccyn.ec-nantes.fr Joint work with: K.Inoue, L. Paulevé, O. Roux

École Centrale de Nantes - IRCCyN - MeForBio team

5th JFLI-LRI-NII workshop - 2013/10/10

2 Modeling biological regulatory networks: Thomas' framework

- 3 The Process Hitting: a framework well suited to concurrent systems
 - Definition
 - From biological models to Process Hitting and refining
 - Tool for analyzing Process Hitting: pint
- Inferring information on the biological model thanks to the Process Hitting
 - Interaction Graph Inference
 - Parametrization Inference

5 Summary & Conclusion

Overview

Introduction

- 2 Modeling biological regulatory networks: Thomas' framework
- 3 The Process Hitting: a framework well suited to concurrent systems
 - Definition
 - From biological models to Process Hitting and refining
 - Tool for analyzing Process Hitting: pint
- Inferring information on the biological model thanks to the Process Hitting
 - Interaction Graph Inference
 - Parametrization Inference
- 5 Summary & Conclusion

Introduction

MeForBio (IRCCyN team, ECN): Formal Methods for Bioinformatics

Research axes

- Models: automata, Petri nets, boolean networks, process algebra (→ process hitting)
- Extended with: time (chronometry vs chronology) and/or parameters
- Analysis techniques: model-checking, control, abstraction, parameters inference
- Applied (and/or designed) to biology, e.g. biological regulatory networks

Introduction

MeForBio (IRCCyN team, ECN)

э

ъ

SQA

Introduction

MeForBio (IRCCyN team, ECN)

Olivier ROUX Professor & team leader

Morgan MAGNIN Associate professor

Carito GUZIOLOWSKI Associate professor

Julien GRAS Research engineer

 $\begin{array}{c} \text{Maxime FOLSCHETTE} \\ \textbf{3}^{rd} \text{ year PhD student} \end{array}$

 $\begin{array}{c} \textbf{Courtney CHANCELLOR} \\ 2^{nd} \text{ year PhD student} \end{array}$

Today's issue

Tricky question

How can we study complex dynamical biological systems, **involving up to 1.000 interacting components**?

Observation

- Classical model-checking approaches suffer from state space explosion
- Leads:
 - Taking profit for Process Algebra structure, based on a **compact** representation of the interactions
 - Develop **static analysis approaches** to verify some crucial properties, e.g. stable states, reachability, key processes, ...

Contribution

Scientific challenge

How can we cope with the analysis of **large-scale systems**, involving up to 1.000 interacting components?

Objectives of this talk (and Loïc's one)

- Introduce a Process Algebra inspired framework based on a compact representation of the interactions
- Develop efficient static analysis approaches to answer most common problems
- Apply the methodology to large-scale biological regulatory networks

Overview

Introduction

2 Modeling biological regulatory networks: Thomas' framework

- 3 The Process Hitting: a framework well suited to concurrent systems
 - Definition
 - From biological models to Process Hitting and refining
 - Tool for analyzing Process Hitting: pint
- Inferring information on the biological model thanks to the Process Hitting
 - Interaction Graph Inference
 - Parametrization Inference
- 5 Summary & Conclusion

Short introduction to Biological Regulatory Networks

Principle of R. Thomas' discrete modeling [TGL76]

- Activations and inhibitions between genes
- Gene/protein couples
- Genes expression is associated to a set of discrete logic levels
- Effective control beyond a given threshold; opposite effect below.

Interaction graph

- Nodes = Genes
- Directed edges = Interactions
- But what is the evolutionary tendency of a when a is at level 1 and b at level 1? ⇒ Need for parametrization

Proposed by René Thomas in 1973, several extensions since then

Historical bio-informatics model for studying genes interactions Widely used and well-adapted to represent dynamic gene systems

Interaction Graph

Interaction Graph: structure of the system (genes & interactions)

Nodes: genes
Name a, b, z
Possible values (levels of expression) 0..1, 0..2
Edges: interactions
Threshold 1
Type (activation or inhibition) + / -

M. MAGNIN (IRCCyN)

2013/10/10

11 / 33

Interaction Graph: structure of the system (genes & interactions)

Nodes: genes

•Name *a*, *b*, *z*

•Possible values (levels of expression) 0..1, 0..2

Edges: interactions

•Threshold 1

•Type (activation or inhibition) + /

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

2013/10/10

11 / 33

Interaction Graph: structure of the system (genes & interactions)

Nodes: genes

•Name *a*, *b*, *z*

•Possible values (levels of expression) 0..1, 0..2

Edges: interactions

Threshold

•Type (activation or inhibition) + / -

Parametrization: strength of the influences (cooperations)

Maps of tendencies for each gene

- \rightarrow To any influences of predecessors ω
- \rightarrow Corresponds a **parameter** $k_{x,\omega}$

 $k_{z,\{a^+,b^+\}} = 2$ means: z tends to 2 when $a \ge 1$ and b < 1

Parametrization: strength of the influences (cooperations)

Maps of tendencies for each gene

- ightarrow To any influences of predecessors ω
- \rightarrow Corresponds a **parameter** $k_{x,\omega}$

 $k_{z,\{a^+,b^+\}} = 2$ means: z tends to 2 when $a \ge 1$ and b < 1

3 = 1 - 1 Q Q

 \rightarrow All needed information to run the model or study its dynamics:

- Build the State Graph
- Find reachability properties, fixed points, attractors
- Other properties...
- \rightarrow **Strengths**: well adapted for the study of biological systems
- → **Drawbacks**: inherent complexity; needs the full specification of cooperations

M. MAGNIN (IRCCyN)

Overview

Introduction

2 Modeling biological regulatory networks: Thomas' framework

- 3 The Process Hitting: a framework well suited to concurrent systems
 - Definition
 - From biological models to Process Hitting and refining
 - Tool for analyzing Process Hitting: pint
 - Inferring information on the biological model thanks to the Process Hitting
 - Interaction Graph Inference
 - Parametrization Inference
 - 5 Summary & Conclusion

Contribution

Scientific challenge

How can we cope with the analysis of **large-scale systems**, involving up to 1.000 interacting components?

Objectives of this part

- Introduce a Process Algebra inspired framework based on a compact representation of the interactions
- Develop efficient static analysis approaches to answer most common problems
- Apply the methodology to large-scale biological regulatory networks

Joint work with

- L. Paulevé (ETH Zurich), M. Folschette, O. Roux (IRCCyN)
- K. Inoue (NII)

Intuitive principle of the Process Hitting framework

Process	=	component a at level i
Interaction	=	
		a at level i makes b at level j increase or
		decrease to level k
denoted		$a \rightarrow b \neq b$ (bit and bounce)
		$a_i \rightarrow b_j + b_k$ (int and bounce)

Definition (Interaction and Retroaction)

Interaction $(a_i \rightarrow b_j \stackrel{r}{\vdash} b_k)$, where a_i is the level of a process a and $b_j \neq b_k$, Retroaction $(a_i \rightarrow a_i \stackrel{r}{\vdash} a_k)$: when $a_i = b_j$. Process Hitting

Definition

The Process Hitting modeling

Sorts: components a, b, z

Actions: dynamics $b_1 \rightarrow z_0 \lor z_1, a_0 \rightarrow a_0 \lor a_1, a_1 \rightarrow z_1 \lor z_2$

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

2013/10/10 16 / 33

JE OQO

The Process Hitting modeling

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

2013/10/10 16 / 33

JE OQO

The Process Hitting modeling

Actions: dynamics $b_1 \rightarrow z_0 \lor z_1$, $a_0 \rightarrow a_0 \lor a_1$, $a_1 \rightarrow z_1 \lor z_2$

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

2013/10/10 16 / 33

JI DOC

The Process Hitting modeling

Sorts: components a, b, z **Processes**: local states / levels of expression z_0, z_1, z_2 **States**: sets of active processes $\langle a_0, b_1, z_0 \rangle$ **Actions**: dynamics $b_1 \rightarrow z_0 \lor z_1, a_0 \rightarrow a_0 \lor a_1, a_1 \rightarrow z_1 \lor z_2$ ELE DQC

The Process Hitting modeling

Sorts: components a, b, z **Processes**: local states / levels of expression z_0, z_1, z_2 **States**: sets of active processes $\langle a_0, b_1, z_1 \rangle$ **Actions**: dynamics $b_1 \rightarrow z_0 \lor z_1, a_0 \rightarrow a_0 \lor a_1, a_1 \rightarrow z_1 \lor z_2$ ELE DQC

The Process Hitting modeling

Sorts: components a, b, z **Processes**: local states / levels of expression z_0, z_1, z_2 **States**: sets of active processes $\langle a_1, b_1, z_1 \rangle$ **Actions**: dynamics $b_1 \rightarrow z_0 \lor z_1, a_0 \rightarrow a_0 \lor a_1, a_1 \rightarrow z_1 \lor z_2$ = 990

The Process Hitting modeling

Sorts: components a, b, z **Processes**: local states / levels of expression z_0, z_1, z_2 **States**: sets of active processes $\langle a_1, b_1, z_2 \rangle$ **Actions**: dynamics $b_1 \rightarrow z_0 \lor z_1, a_0 \rightarrow a_0 \lor a_1, a_1 \rightarrow z_1 \lor z_2$ ELE DOC

How to introduce some **cooperation** between sorts? $\underline{a_1 \land b_0} \rightarrow z_1 \lor z_2$ Solution: a **cooperative sort** ab to express $\underline{a_1 \land b_0}$ Constraint: represent each configuration $\langle \underline{a_1, b_0} \rangle \Rightarrow ab_{10}$ Advantage: regular sort; drawbacks: complexity, temporal shift

M. MAGNIN (IRCCyN)

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_0$ Constraint: represent each configuration $\langle a_1, b_0 \rangle \Rightarrow ab_{10}$ Advantage: regular sort; drawbacks: complexity, temporal shift

M. MAGNIN (IRCCyN)

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_0$ Constraint: represent each configuration $\langle a_1, b_0 \rangle \Rightarrow ab_{10}$ Advantage: regular sort; drawbacks: complexity, temporal shift

M. MAGNIN (IRCCyN)

Adding cooperations [PMR12]

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_0$ = 900 M. MAGNIN (IRCCyN) 5th JFLI-LRI-NII workshop 2013/10/10 17 / 33

How to introduce some **cooperation** between sorts? $\underline{a_1 \land b_0} \rightarrow z_1 \lor z_2$ Solution: a **cooperative sort** ab to express $\underline{a_1 \land b_0}$ Constraint: represent each configuration $\langle \underline{a_1, b_0} \rangle \Rightarrow ab_{10}$ Advantage: regular sort; drawbacks: complexity, temporal shift M. MAGNIN (IRCCyN) Sth JELI-LRI-NII workshop 2013/10/10 17/33

How to introduce some **cooperation** between sorts? $\underline{a_1 \land b_0} \rightarrow z_1 \lor z_2$ Solution: a **cooperative sort** ab to express $\underline{a_1 \land b_0}$ Constraint: represent each configuration $\langle \underline{a_1}, \underline{b_0} \rangle \Rightarrow a\underline{b_1}_0$ Advantage: regular sort; drawbacks: complexity, temporal shift $\underline{a_1 \land b_0} \Rightarrow \underline{a_1 \land b_0} \Rightarrow \underline{a_1 \land b_0}$ M. MAGNIN (IRCCYN) Sth JELI-LRI-NII workshop 2013/10/10 17/33

How to introduce some **cooperation** between sorts? $\underline{a_1 \land b_0} \rightarrow z_1 \downarrow^2 z_2$ Solution: a **cooperative sort** ab to express $\underline{a_1 \land b_0}$ Constraint: represent each configuration $\langle \underline{a_1, b_0} \rangle \Rightarrow ab_{10}$ Advantage: regular sort; drawbacks: complexity, temporal shift $\underline{a_1 \land b_0} \Rightarrow \underline{a_1 \land b_0} \Rightarrow \underline{a_1 \land b_0}$ M. MAGNIN (IRCCYN) Sth JELL-LRI-NII workshop 2013/10/10 17/33

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_0$ Constraint: represent each configuration $\langle a_1, b_0 \rangle \Rightarrow ab_{10}$ Advantage: regular sort; drawbacks: complexity, temporal shift

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

How to introduce some **cooperation** between sorts? $a_1 \wedge b_0 \rightarrow z_1 \upharpoonright z_2$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_0$ Constraint: represent each configuration $\langle a_1, b_0 \rangle \Rightarrow ab_{10}$ Advantage: regular sort; drawbacks: complexity, temporal shift

How to introduce some **cooperation** between sorts? $\underline{a_1 \land b_0} \rightarrow z_1 \lor z_2$ Solution: a **cooperative sort** ab to express $\underline{a_1 \land b_0}$ Constraint: represent each configuration $\langle \underline{a_1, b_0} \rangle \Rightarrow ab_{10}$ Advantage: regular sort; drawbacks: complexity, temporal shift

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

Static Analysis: Fixed Points [PMR11]

Fixed point = state where no action can be fired

- \rightarrow avoid couples of processes bounded by an action

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

2013/10/10 18 / 33

Static Analysis: Fixed Points [PMR11]

Fixed point = state where no action can be fired

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow n-cliques = fixed points

Static Analysis: Fixed Points [PMR11]

Fixed point = state where no action can be fired

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow **n-cliques** = fixed points

Static Analysis: Fixed Points [PMR11]

Fixed point = state where no action can be fired

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow **n-cliques** = fixed points

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

2013/10/10 18 / 33

Static Analysis: Fixed Points [PMR11]

Fixed point = state where no action can be fired

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow **n-cliques** = fixed points

Exponential complexity w.r.t. the number of sorts

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

2013/10/10 18 / 33

M. MAGNIN (IRCCyN)

2013/10/10 19 / 33

M. MAGNIN (IRCCyN)

2013/10/10 19 / 33

Allow cooperation between two genes

- How to express $(a_1 \wedge b_1) \rightarrow z_0 \lor z_1$?
- \rightarrow Add a **cooperative sort** reflecting the state of *a* and *b*

→ Introduces a temporal shift (over-approximation) → Solution = Prioritized actions

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

Allow cooperation between two genes

- How to express $(a_1 \wedge b_1) \rightarrow z_0 \stackrel{\scriptscriptstyle ?}{\vdash} z_1$?
- \rightarrow Add a **cooperative sort** reflecting the state of *a* and *b*

→ Introduces a temporal shift (over-approximation)
→ Solution = Prioritized actions

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

Allow cooperation between two genes

- How to express $(a_1 \wedge b_1) \rightarrow z_0 \lor z_1$?
- \rightarrow Add a **cooperative sort** reflecting the state of *a* and *b*

ightarrow Introduces a temporal shift (over-approximation) ightarrow Solution = Prioritized actions

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

Allow cooperation between two genes

- How to express $(a_1 \wedge b_1) \rightarrow z_0 \lor z_1$?
- \rightarrow Add a **cooperative sort** reflecting the state of *a* and *b*

→ Introduces a temporal shift (over-approximation)
→ Solution = Prioritized actions

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

Allow cooperation between two genes

- How to express $(a_1 \wedge b_1) \rightarrow z_0 \lor z_1$?
- \rightarrow Add a **cooperative sort** reflecting the state of *a* and *b*

 \rightarrow Introduces a temporal shift (over-approximation) \rightarrow Solution = Prioritized actions

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

Allow cooperation between two genes

- How to express $(a_1 \wedge b_1) \rightarrow z_0 \lor z_1$?
- \rightarrow Add a **cooperative sort** reflecting the state of *a* and *b*

ightarrow Introduces a temporal shift (over-approximation) ightarrow Solution = Prioritized actions

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

Allow cooperation between two genes

- How to express $(a_1 \wedge b_1) \rightarrow z_0 \lor z_1$?
- \rightarrow Add a **cooperative sort** reflecting the state of *a* and *b*

ightarrow Introduces a temporal shift (over-approximation) ightarrow Solution = Prioritized actions

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

Allow cooperation between two genes

- How to express $(a_1 \wedge b_1) \rightarrow z_0 \lor z_1$?
- \rightarrow Add a **cooperative sort** reflecting the state of *a* and *b*

 \rightarrow Introduces a temporal shift (over-approximation)

ightarrow Solution = Prioritized actions

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

Allow cooperation between two genes

- How to express $(a_1 \wedge b_1) \rightarrow z_0 \lor z_1$?
- \rightarrow Add a **cooperative sort** reflecting the state of *a* and *b*

 \rightarrow Introduces a temporal shift (over-approximation)

 \rightarrow Solution = Prioritized actions

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

EL OQO

21 / 33

2013/10/10

Using Process Hitting for Interaction Graphs Study

Motivation

- Interaction Graph is the **historical discrete model** (suitable and widespread in biological research)
- Several tools exist of the analysis of interaction graphs, but the state graph is needed for some results ⇒ combinatorial explosion

Contribution: Process Hitting to study large Biological Regulatory Networks

- Translation from Interaction Graphs + Refining
- Efficient static analysis

The Process Hitting modeling

Key features

- Dynamic modeling with an atomistic point of view
 - \rightarrow Independent actions
 - \rightarrow Cooperation modeled with cooperative sorts
- Efficient static analysis
 - \rightarrow Reachability of a process can be computed in **linear time** in the number of sorts
- Useful for the study of large biological models
 - \rightarrow Up to hundreds of sorts

(Future) extensions

- Actions with stochasticity
- Actions with priorities
- Continuous time with clocks?

The Pint Tool

[http://loicpauleve.name/pint/]

Features

- Free software (API available for future developments)
- Textual language to describe a Process Hitting (GUI currently under development)

• Implemented tools:

- Translations from and to various other models
- Fixed points research
- Stochastic simulation
- Reachability checker

The Mobyle portal

[http://mobyle.biotempo.univ-nantes.fr/cgi-bin/portal.py]

Presentation

- Web application unifying tools for systems biology analysis
- Powered by the Mobyle framework
- Project led by Julien GRAS (French ANR "BIOTempo")

Figure: General architecture of the BIOtempo Mobyle server

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

2013/10/10 24 / 33

EL OQO

The Mobyle portal

[http://mobyle.biotempo.univ-nantes.fr/cgi-bin/portal.py]

Presentation

- Web application unifying tools for systems biology analysis
- Powered by the Mobyle framework
- Project led by Julien GRAS (French ANR "BIOTempo")

Figure: Screenshot from the BIOtempo Mobyle server: http://mobyle.biotempo.univ-nantes.fr/cgi-bin/portal.py

M. MAGNIN (IRCCyN)

Overview

Introduction

- 2 Modeling biological regulatory networks: Thomas' framework
- 3 The Process Hitting: a framework well suited to concurrent systems
 - Definition
 - From biological models to Process Hitting and refining
 - Tool for analyzing Process Hitting: pint
- Inferring information on the biological model thanks to the Process Hitting
 - Interaction Graph Inference
 - Parametrization Inference

Summary & Conclusion

Information inference

Inferring a BRN with Thomas' parameters

M. MAGNIN (IRCCyN)

1.2

-

- 🔹 🖻

Information inference

Inferring a BRN with Thomas' parameters

M. MAGNIN (IRCCyN)

2013/10/10 26 / 33

- (E

1.2

Information inference

Inferring a BRN with Thomas' parameters

-

Information inference Interaction Graph Inference

Inferring the Interaction Graph [FPI⁺12]

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

Ŀ 2013/10/10 27 / 33

1.2

SQA

Information inference Interaction Graph Inference

Inferring the Interaction Graph [FPI⁺12]

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

Ŀ 2013/10/10 27 / 33

-
Inferring the Interaction Graph [FPI⁺12]

- Pick one regulator [a], and choose an active process for all the others [b₀].
- 2. Change the active process of this regulator [*a*₀, *a*₁] and watch the **focal processes**.
- 3. Conclude locally: $(a_0 \lor a_1 \Rightarrow z_0 \lor z_2)$ \Rightarrow activation (+) & threshold = 1.
- 4. Iterate and conclude globally.

Inferring the Interaction Graph [FPI⁺12]

- Pick one regulator [a], and choose an active process for all the others [b₀].
- 2. Change the active process of this regulator [*a*₀, *a*₁] and watch the **focal processes**.
- 3. Conclude locally: $(a_0 \lor a_1 \Rightarrow z_0 \lor z_2)$ \Rightarrow activation (+) & threshold = 1.
- 4. Iterate and conclude globally.

Inferring the Interaction Graph [FPI⁺12]

- Pick one regulator [a], and choose an active process for all the others [b₀].
- 2. Change the active process of this regulator [*a*₀, *a*₁] and watch the **focal processes**.
- 3. Conclude locally: $(a_0 \lor a_1 \Rightarrow z_0 \lor z_2)$ \Rightarrow activation (+) & threshold = 1.
- 4. Iterate and conclude globally.

Inferring the Interaction Graph [FPI⁺12]

- Pick one regulator [a], and choose an active process for all the others [b₀].
- 2. Change the active process of this regulator [*a*₀, *a*₁] and watch the **focal processes**.
- 3. Conclude locally: $(a_0 \lor a_1 \Rightarrow z_0 \lor z_2)$ \Rightarrow activation (+) & threshold = 1.
- 4. Iterate and conclude globally.

Inferring the Interaction Graph [FPI⁺12]

- Pick one regulator [a], and choose an active process for all the others [b₀].
- 2. Change the active process of this regulator [*a*₀, *a*₁] and watch the **focal processes**.
- 3. Conclude locally: $(a_0 \lor a_1 \Rightarrow z_0 \lor z_2)$ \Rightarrow activation (+) & threshold = 1.
- 4. Iterate and conclude globally.

Inferring the Interaction Graph [FPI⁺12]

- Pick one regulator [a], and choose an active process for all the others [b₀].
- 2. Change the active process of this regulator [*a*₀, *a*₁] and watch the **focal processes**.
- 3. Conclude locally: $(a_0 \lor a_1 \Rightarrow z_0 \lor z_2)$ \Rightarrow activation (+) & threshold = 1.
- 4. Iterate and conclude globally.

Inferring the Interaction Graph [FPI⁺12]

- Pick one regulator [a], and choose an active process for all the others [b₀].
- 2. Change the active process of this regulator [*a*₀, *a*₁] and watch the **focal processes**.
- 3. Conclude locally: $(a_0 \upharpoonright a_1 \Rightarrow z_0 \bowtie z_2)$
 - \Rightarrow activation (+) & threshold = 1.
- 4. Iterate and conclude globally.

Inferring the Interaction Graph [FPI⁺12]

- Pick one regulator [a], and choose an active process for all the others [b₀].
- 2. Change the active process of this regulator [*a*₀, *a*₁] and watch the **focal processes**.
- 3. Conclude locally: $(a_0 \lor a_1 \Rightarrow z_0 \lor z_2)$
 - \Rightarrow activation (+) & threshold = 1.
- 4. Iterate and conclude globally.

Inferring the Interaction Graph [FPI⁺12]

- Pick one regulator [a], and choose an active process for all the others [b₀].
- 2. Change the active process of this regulator [*a*₀, *a*₁] and watch the **focal processes**.
- 3. Conclude locally: $(a_0 \upharpoonright a_1 \Rightarrow z_0 \bowtie z_2)$
 - \Rightarrow activation (+) & threshold = 1.
- 4. Iterate and conclude globally.

Inferring the Interaction Graph [FPI⁺12]

- Pick one regulator [a], and choose an active process for all the others [b₀].
- 2. Change the active process of this regulator [*a*₀, *a*₁] and watch the **focal processes**.
- 3. Conclude locally: $(a_0 \lor a_1 \Rightarrow z_0 \lor z_2)$
 - \Rightarrow activation (+) & threshold = 1.
- 4. Iterate and conclude globally.

Inferring the Interaction Graph [FPI⁺12]

- Pick one regulator [a], and choose an active process for all the others [b₀].
- 2. Change the active process of this regulator [*a*₀, *a*₁] and watch the **focal processes**.
- 3. Conclude locally: $(a_0 \upharpoonright a_1 \Rightarrow z_0 \bowtie z_2)$
 - \Rightarrow activation (+) & threshold = 1.
- 4. Iterate and conclude globally.

Inferring the Interaction Graph [FPI⁺12]

Problematic cases:

 $\left. \begin{array}{l} \rightarrow \text{ No focal processes } (\textbf{cycle}) \\ \rightarrow \text{ Opposite influences } (+ \& -) \end{array} \right\} \Rightarrow \textbf{Unsigned edge}$

- For each configuration of resources [ω = {a⁺, b⁻}] find the **focal processes**. If possible, conclude. [k_{z,{a⁺,b⁻}} = 1] Inconclusive cases:
 - Behavior cannot be represented as a BRN
 - Lack of cooperation (no focal processes)

- 1. For each configuration of resources $[\omega = \{a^+, b^-\}]$ find the **focal processes**. If possible, conclude. $[k_{z,\{a^+,b^-\}} = 1]$ Inconclusive cases:
 - Behavior cannot be represented as a BRN
 - Lack of cooperation (no focal processes)

- 1. For each configuration of resources $[\omega = \{a^+, b^-\}]$ find the **focal processes**. If possible, conclude. $[k_{z,\{a^+,b^-\}} = 1]$ Inconclusive cases:
 - Behavior cannot be represented as a BRN
 - Lack of cooperation (no focal processes)

- 1. For each configuration of resources $[\omega = \{a^+, b^-\}]$ find the **focal processes**. If possible, conclude. $[k_{z,\{a^+,b^-\}} = 1]$ Inconclusive cases:
 - Behavior cannot be represented as a BRN
 - Lack of cooperation (no focal processes)

- 1. For each configuration of resources $[\omega = \{a^+, b^-\}]$ find the **focal processes**. If possible, conclude. $[k_{z,\{a^+,b^-\}} = 1]$ Inconclusive cases:
 - Behavior cannot be represented as a BRN
 - Lack of cooperation (no focal processes)

Inferring Parameters

- 1. For each configuration of resources $[\omega = \{a^+, b^-\}]$ find the **focal processes**. If possible, conclude. $[k_{z,\{a^+,b^-\}} = 1]$ Inconclusive cases:
 - Behavior cannot be represented as a BRN
 - Lack of cooperation (no focal processes)
- If some parameters could not be inferred, enumerate all admissible parametrizations, regarding biological constraints and the dynamics of the Process Hitting ⇒ k_{z,{a⁺,b⁻}} ∈ {0;1;2}; k_{z,{a⁻,b⁺}} ∈ {0;1;2}

Overview

Introduction

- 2 Modeling biological regulatory networks: Thomas' framework
- 3 The Process Hitting: a framework well suited to concurrent systems
 - Definition
 - From biological models to Process Hitting and refining
 - Tool for analyzing Process Hitting: pint
- Inferring information on the biological model thanks to the Process Hitting
 - Interaction Graph Inference
 - Parametrization Inference

5 Summary & Conclusion

Implementation

Workflow:

- Read and translate the models with **OCaml**
 - \rightarrow Uses the existing free library Pint
 - \rightarrow Documentation + examples: http://processhitting.wordpress.com/
- Express the problem in **ASP** (logic programming)
 - \rightarrow Solve with Clingo (Gringo + Clasp)

Mod		IG inference		Parameters inference					
Name		Р	А	Δt	Edges	Δt	Parameters		
[EGFR20]	20 +22	152	399	1s	50	1s	191		
[TCRSIG40]	40 +14	156	301	1s	54	1s	143		
[TCRSIG94]	94 +39	448	1124	13s	169	∞	2.10^{9}		
[EGFR104]	104 +89	748	2356	4min	241	1min 30s	$1.10^{6}/2.10^{6}$		
S Souther CS Community D Durangers A Antique									

[EGFR20]: Epidermal Growth Factor Receptor, by Özgür Sahin et al. [EGFR104]: Epidermal Growth Factor Receptor, by Regina Samaga et al. [TCRSIG40]: T-Cell Receptor Signaling, by Steffen Klamt et al. [TCRSIG94]: T-Cell Receptor Signaling, by Julio Saez-Rodrigez etal. (≧) ∃| ⇒ ⊃۹.0

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

2013/10/10 31 / 33

Implementation

Workflow:

- Read and translate the models with **OCaml**
 - \rightarrow Uses the existing free library Pint
 - \rightarrow Documentation + examples: http://processhitting.wordpress.com/
- Express the problem in **ASP** (logic programming)

 \rightarrow Solve with Clingo (Gringo + Clasp)

Mod		IG inference		Parameters inference					
Name	S+CS	Р	A	Δt	Edges	Δt	Parameters		
[EGFR20]	20 +22	152	399	1s	50	1s	191		
[TCRSIG40]	40 +14	156	301	1s	54	1s	143		
[TCRSIG94]	94 +39	448	1124	13s	169	∞	2.10 ⁹		
[EGFR104]	104 +89	748	2356	4min	241	1min 30s	$1.10^{6}/2.10^{6}$		
S = Sorts $CS = Cooperative sorts$ $P = Processes$ $A = Actions$									

[EGFR20]: Epidermal Growth Factor Receptor, by Özgür Sahin et al.[EGFR104]: Epidermal Growth Factor Receptor, by Regina Samaga et al.[TCRSIG40]: T-Cell Receptor Signaling, by Steffen Klamt et al.[TCRSIG94]: T-Cell Receptor Signaling, by Julio Saez-Rodriguez etal.[TCRSIG94]: T-Cell Receptor Signaling, by Julio Saez-Rodriguez etal.

M. MAGNIN (IRCCyN)

5th JFLI-LRI-NII workshop

2013/10/10 31 / 33

Summary

Process Hitting and ASP

- Inference of the complete Interaction Graph
- Inference of the possibly partial Parametrization
- Enumerate all full & admissible Parametrizations
 - \rightarrow Exhaustive approaches

Complexity: linear in the number of genes, exponential in the number of regulators of one gene

Summary

Contribution: new translation Process Hitting ~>> René Thomas

- \rightarrow New formal link between the two models
- \rightarrow More visibility to the Process Hitting
- \rightarrow Inference approach that takes benefit from both the Process Hitting compact structure and the power of ASP

Further work

Models and algorithms

- Add **priorities** in the Process Hitting framework and adapt the static analyses approaches for this enriched model [FPMR13]
- From priorities to quantitative timing information
- Connect Process Hitting compact structure with **decomposition techniques** in continuous approaches [ACC12, CAC⁺13]

Application

- Use the approach for the analysis of larger biological networks
- Contribute to the **discovery** of biological regulatory networks based on biological data
- Study key properties (e.g. concept of resilience)

Amine Ammar, Elias Cueto, and Francisco Chinesta. Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions. International Journal for Numerical Methods in Biomedical Engineering, 28(9):960–973, 2012.

 Courtney Chancellor, Amine Ammar, Francisco Chinesta, Morgan Magnin, and Olivier Roux.
Linking discrete and stochastic models: The chemical master equation as a bridge between process hitting and proper generalized decomposition.
In CMSB, pages 50–63, 2013.

Maxime Folschette, Loïc Paulevé, Katsumi Inoue, Morgan Magnin, and Olivier Roux. Concretizing the process hitting into biological regulatory networks.

In Proceedings of the 10th international conference on Computational Methods in Systems Biology, CMSB'12, pages 166–186, Berlin, Heidelberg, 2012. Springer-Verlag.

M. MAGNIN (IRCCyN)

Maxime Folschette, Loïc Paulevé, Morgan Magnin, and Olivier Roux. Under-approximation of reachability in multivalued asynchronous networks.

In <u>4th International Workshop on Interactions between Computer</u> <u>Science and Biology (CS2Bio'13)</u>, 2013. accepted.

Loïc Paulevé, Morgan Magnin, and Olivier Roux. Refining dynamics of gene regulatory networks in a stochastic π -calculus framework.

In <u>Transactions on Computational Systems Biology XIII</u>, volume 6575 of <u>Lecture Notes in Comp Sci</u>, pages 171–191. Springer, 2011.

Loïc Paulevé, Morgan Magnin, and Olivier Roux. Static analysis of biological regulatory networks dynamics using abstract interpretation.

Mathematical Structures in Computer Science, 22(04):651-685, 2012.

R. Thomas, A.M. Gathoye, and L. Lambert.

A complex control circuit. regulation of immunity in temperate bacteriophages.

Eur J Biochem, 71(1):211-27, 1976.

-