KUBIC-NII Joint Seminar on Bioinformatics 2014

Perturbations and Recovery Costs in Biological Regulatory Networks with Process Hitting

Maxime FOLSCHETTE

MeForBio / IRCCyN / École centrale de Nantes (Nantes, France) maxime.folschette@irccyn.ec-nantes.fr <http://maxime.folschette.name/>

Ongoing work with: **Morgan MAGNIN** and **Katsumi INOUE**

2014/11/17

Studying the Perturbations of a Biological Model

Biological models are well-known for being resilient

- Alternative pathways
- • Restoration of oscillations

Studying the Perturbations of a Biological Model

Biological models are well-known for being resilient

- Alternative pathways
- Restoration of oscillations

Observe or measure this in qualitative models:

- Running the models \rightarrow slow and inefficient
- Model checking \rightarrow requires powerful methods
- Resilience times \rightarrow requires timing data
- • Observation of specific characteristics → **impact degree**

Studying the Perturbations of a Biological Model

Biological models are well-known for being resilient

- Alternative pathways
- Restoration of oscillations

Observe or measure this in qualitative models:

- Running the models \rightarrow slow and inefficient
- Model checking \rightarrow requires powerful methods
- Resilience times \rightarrow requires timing data
- Observation of specific characteristics → **impact degree**

Refine this analysis with new model checking methods:

- The Process Hitting framework
- Efficient **reachability analysis**
- • Finer study of the perturbations

[Jiang, Tamura, Ching, Akutsu in Communications and Computer Sciences, 2013]

Reaction networks = set of species consumed and produced by reactions

• Reaches an equilibrium state

[Jiang, Tamura, Ching, Akutsu in Communications and Computer Sciences, 2013]

Reaction networks = set of species consumed and produced by reactions

• Reaches an equilibrium state

Impact degree of $A =$ number of nodes impacted by a knockout

[Jiang, Tamura, Ching, Akutsu in Communications and Computer Sciences, 2013]

Reaction networks = set of species consumed and produced by reactions

• Reaches an equilibrium state

Impact degree of $A =$ number of nodes impacted by a knockout

[Jiang, Tamura, Ching, Akutsu in Communications and Computer Sciences, 2013]

Reaction networks = set of species consumed and produced by reactions

• Reaches an equilibrium state

Impact degree of $A =$ number of nodes impacted by a knockout \rightarrow For A: 4

[Jiang, Tamura, Ching, Akutsu in Communications and Computer Sciences, 2013]

Reaction networks = set of species consumed and produced by reactions

• Reaches an equilibrium state

Impact degree of $A =$ number of nodes impacted by a knockout \rightarrow For A: 4

- Notion of importance/criticality of a node
- • Highlights the resilience of biological systems (alternative paths)

Model from [Comet, Bernot in Nice Spring school on Modelling and simulation of biological processes in the context of genomics, 2010]

Regulation networks = set of species regulated by other species

- \rightarrow The regulating species are not consumed
- \rightarrow Negative regulations \rightarrow Not always a steady state

Model from [Comet, Bernot in Nice Spring school on Modelling and simulation of biological processes in the context of genomics, 2010]

Regulation networks = set of species regulated by other species

- \rightarrow The regulating species are not consumed
- \rightarrow Negative regulations \rightarrow Not always a steady state

Model from [Comet, Bernot in Nice Spring school on Modelling and simulation of biological processes in the context of genomics, 2010]

Regulation networks = set of species regulated by other species

- \rightarrow The regulating species are not consumed
- \rightarrow Negative regulations \rightarrow Not always a steady state

Model from [Comet, Bernot in Nice Spring school on Modelling and simulation of biological processes in the context of genomics, 2010]

Regulation networks = set of species regulated by other species

- \rightarrow The regulating species are not consumed
- \rightarrow Negative regulations \rightarrow Not always a steady state

Model from [Comet, Bernot in Nice Spring school on Modelling and simulation of biological processes in the context of genomics, 2010]

Regulation networks = set of species regulated by other species

- \rightarrow The regulating species are not consumed
- \rightarrow Negative regulations \rightarrow Not always a steady state

New notion of **impact degree**

• Number of species that are completely turned off \rightarrow For A: 3

Model from [Comet, Bernot in Nice Spring school on Modelling and simulation of biological processes in the context of genomics, 2010]

Regulation networks = set of species regulated by other species

- \rightarrow The regulating species are not consumed
- \rightarrow Negative regulations \rightarrow Not always a steady state

New notion of **impact degree**

• Number of species that are completely turned off \rightarrow For A: 3

Model from [Comet, Bernot in Nice Spring school on Modelling and simulation of biological processes in the context of genomics, 2010]

Regulation networks = set of species regulated by other species

- \rightarrow The regulating species are not consumed
- \rightarrow Negative regulations \rightarrow Not always a steady state

New notion of **impact degree**

• Number of species that are completely turned off \rightarrow For A: 3

Model from [Comet, Bernot in Nice Spring school on Modelling and simulation of biological processes in the context of genomics, 2010]

Regulation networks = set of species regulated by other species

- \rightarrow The regulating species are not consumed
- \rightarrow Negative regulations \rightarrow Not always a steady state

- Number of species that are completely turned off \rightarrow For A: 3
- Number of species whose behavior is modified \rightarrow For B: $1 + 1 = 2$

Model from [Comet, Bernot in Nice Spring school on Modelling and simulation of biological processes in the context of genomics, 2010]

Regulation networks = set of species regulated by other species

- \rightarrow The regulating species are not consumed
- \rightarrow Negative regulations \rightarrow Not always a steady state

- Number of species that are completely turned off \rightarrow For A: 3
- Number of species whose behavior is modified \rightarrow For B: $1 + 1 = 2$
- \rightarrow Requires a more precise study of the behavior

Abstractions of the Representation

Abstractions of the Representation

0 2012 Fearson Education, Inc.

[Richard, Comet, Bernot (tutorial), 2008]

[Richard, Comet, Bernot (tutorial), 2008]

[Richard, Comet, Bernot (tutorial), 2008]

• Unknown real values of concentrations or continuous activity levels → Abstracted as thresholds or **discrete levels**

[Richard, Comet, Bernot (tutorial), 2008]

- Unknown real values of concentrations or continuous activity levels
	- → Abstracted as thresholds or **discrete levels**
- Continuous variations of the real values
	- → **Unitary** dynamics

[Richard, Comet, Bernot (tutorial), 2008]

- Unknown real values of concentrations or continuous activity levels
	- → Abstracted as thresholds or **discrete levels**
- Continuous variations of the real values
	- → **Unitary** dynamics
- Simultaneous crossings of two thresholds never occurs
	- → **Asynchronous** dynamics

[Kauffman in Journal of Theoretical Biology, 1969] [Thomas in Journal of Theoretical Biology, 1973]

• A set of components $N = \{a, b, z\}$

[Kauffman in Journal of Theoretical Biology, 1969] [Thomas in Journal of Theoretical Biology, 1973]

- A set of components $N = \{a, b, z\}$
- A set of discrete expression levels for each component $z \in \mathbb{F}^z = [0; 2]$
- The set of global states $\mathbb{F} = \mathbb{F}^a \times \mathbb{F}^b \times \mathbb{F}^z$

[Kauffman in Journal of Theoretical Biology, 1969] [Thomas in Journal of Theoretical Biology, 1973]

- A set of components $N = \{a, b, z\}$
- A set of discrete expression levels for each component $z \in \mathbb{F}^z = [0; 2]$
- The set of global states $\mathbb{F} = \mathbb{F}^a \times \mathbb{F}^b \times \mathbb{F}^z$
- An evolution function for each component $f^z : \mathbb{F} \to \mathbb{F}^2$

$$
\begin{array}{c|ccccc}\nb & f^a(b) & a & b & f^b(a,b) & a & b & f^z(a,b) \\
\hline\n0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 2 & 2\n\end{array}
$$

[Kauffman in Journal of Theoretical Biology, 1969] [Thomas in Journal of Theoretical Biology, 1973]

- A set of components $N = \{a, b, z\}$
- A set of discrete expression levels for each component $z \in \mathbb{F}^z = [0; 2]$
- The set of global states $\mathbb{F} = \mathbb{F}^a \times \mathbb{F}^b \times \mathbb{F}^z$
- An evolution function for each component $f^z : \mathbb{F} \to \mathbb{F}^2$
- Signs and thresholds on the edges $a \stackrel{+1}{\longrightarrow} z$

$$
\begin{array}{c|ccccc}\nb & f^a(b) & a & b & f^b(a,b) & a & b & f^z(a,b) \\
\hline\n0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
 & 1 & 0 & 0 & 1 & 0 & 1 \\
 & 1 & 1 & 1 & 1 & 1 & 2\n\end{array}
$$

Analysis of Thomas Modeling

The State graph is computed in a unitary and asynchronous fashion

 \rightarrow **Exponential** size in the number of components

Analysis of Thomas Modeling

The State graph is computed in a unitary and asynchronous fashion

 \rightarrow **Exponential** size in the number of components

Some works link the structure of the model to some dynamic properties:

- **Thomas' conjectures** (conditions for multi-stationarity or sustained oscillations)
	- Boolean case: [Remy, Ruet, Thieffry in Advances in Applied Mathematics, 2008]
	- Multivalued case: [Richard, Comet in Discrete Applied Mathematics, 2007]

Analysis of Thomas Modeling

The State graph is computed in a unitary and asynchronous fashion

 \rightarrow **Exponential** size in the number of components

Some works link the structure of the model to some dynamic properties:

- **Thomas' conjectures** (conditions for multi-stationarity or sustained oscillations)
	- Boolean case: [Remy, Ruet, Thieffry in Advances in Applied Mathematics, 2008]
	- Multivalued case: [Richard, Comet in Discrete Applied Mathematics, 2007]

But reachability properties require to compute the whole state graph: Example: From the initial state $(a, b, z) = (0, 0, 0)$, is it possible to reach $z = 2$?

- **Temporal logics**
	- CTL: [Bernot, Comet, Richard, Guespin in Journal of Theoretical Biology, 2004]
	- LTL: [Ito, Izumi, Hagihara, Yonezaki in BioInformatics and BioEngineering, 2010]

Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

The **Process Hitting** is:

- A recent formalism well-adapted to the modeling of BRNs
- An **atomistic, qualitative and asynchronous** modeling (explicit & discrete expression levels)
- **Simple but powerful** dynamics (constraints on the form of actions)

Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

The **Process Hitting** is:

- A recent formalism well-adapted to the modeling of BRNs
- An **atomistic, qualitative and asynchronous** modeling (explicit & discrete expression levels)
- **Simple but powerful** dynamics (constraints on the form of actions)

Previously developed tools:

- **Reachability analysis** by abstract interpretation
- Fixed points enumeration
- Stochastic parameters

Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

The **Process Hitting** is:

- A recent formalism well-adapted to the modeling of BRNs
- An **atomistic, qualitative and asynchronous** modeling (explicit & discrete expression levels)
- **Simple but powerful** dynamics (constraints on the form of actions)

Previously developed tools:

- **Reachability analysis** by abstract interpretation
- Fixed points enumeration
- Stochastic parameters
- \rightarrow The **reachability analysis** is very efficient (polynomial time)
- \rightarrow The Process Hitting is also well-adapted to study **large BRNs**

[Perturbations and Recovery Costs in BRNs with PH](#page-0-0) ⊙ [The Process Hitting Framework](#page-35-0)

Standard Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z
Standard Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z **Processes**: local states / discrete expression levels z_0 , z_1 , z_2

Standard Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z **Processes**: local states / discrete expression levels z_0 , z_1 , z_2 **States:** sets of active processes $\langle a_0, b_1, z_0 \rangle$

Standard Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z **Processes**: local states / discrete expression levels z_0 , z_1 , z_2 **States:** sets of active processes $\langle a_0, b_1, z_0 \rangle$ **Actions**: dynamics $b_1 \rightarrow z_0$ $\uparrow z_1$, $a_0 \rightarrow a_0$ $\uparrow a_1$, $a_1 \rightarrow z_1$ $\uparrow z_2$

Standard Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z **Processes**: local states / discrete expression levels z_0 , z_1 , z_2 **States**: sets of active processes $\langle a_0, b_1, z_0 \rangle$ **Actions**: dynamics $b_1 \rightarrow z_0$ $\uparrow z_1$, $a_0 \rightarrow a_0$ $\uparrow a_1$, $a_1 \rightarrow z_1$ $\uparrow z_2$

Standard Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z **Processes**: local states / discrete expression levels z_0 , z_1 , z_2 **States:** sets of active processes $\langle a_0, b_1, z_1 \rangle$ **Actions**: dynamics $b_1 \rightarrow z_0$ $\uparrow z_1$, $a_0 \rightarrow a_0$ $\uparrow a_1$, $a_1 \rightarrow z_1$ $\uparrow z_2$

Standard Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z **Processes**: local states / discrete expression levels z_0 , z_1 , z_2 **States:** sets of active processes $\langle a_1, b_1, z_1 \rangle$ **Actions**: dynamics $b_1 \rightarrow z_0$ $\uparrow z_1$, $a_0 \rightarrow a_0$ $\uparrow a_1$, $a_1 \rightarrow z_1$ $\uparrow z_2$

Standard Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z **Processes**: local states / discrete expression levels z_0 , z_1 , z_2 **States:** sets of active processes $\langle a_1, b_1, z_2 \rangle$ **Actions**: dynamics $b_1 \rightarrow z_0$ $\uparrow z_1$, $a_0 \rightarrow a_0$ $\uparrow a_1$, $a_1 \rightarrow z_1$ $\uparrow z_2$

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Successive reachability of processes:

 \rightarrow Concretization of the objective $=$ scenario $a_0 \rightarrow c_0 \rvert^2 c_1 :: b_0 \rightarrow d_0 \rvert^2 d_1 :: c_1 \rightarrow b_0 \rvert^2 b_1 :: b_1 \rightarrow d_1 \rvert^2 d_2$

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Successive reachability of processes:

 \rightarrow Concretization of the objective $=$ scenario $a_0 \rightarrow c_0 \rvert c_1 :: b_0 \rightarrow d_0 \rvert c_1 :: c_1 \rightarrow b_0 \rvert c_1 :: b_1 \rightarrow d_1 \rvert c_2$

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Successive reachability of processes:

 \rightarrow Concretization of the objective $=$ scenario $a_0 \rightarrow c_0 \rvert^2 c_1 :: b_0 \rightarrow d_0 \rvert^2 d_1 :: c_1 \rightarrow b_0 \rvert^2 b_1 :: b_1 \rightarrow d_1 \rvert^2 d_2$

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Successive reachability of processes:

 \rightarrow Concretization of the objective $=$ scenario $a_0 \rightarrow c_0 \rvert^2 c_1 :: b_0 \rightarrow d_0 \rvert^2 d_1 :: c_1 \rightarrow b_0 \rvert^2 b_1 :: b_1 \rightarrow d_1 \rvert^2 d_2$

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Successive reachability of processes:

 \rightarrow Concretization of the objective $=$ scenario $a_0 \rightarrow c_0$ \uparrow $c_1 :: b_0 \rightarrow d_0$ \uparrow $d_1 :: c_1 \rightarrow b_0$ \uparrow $b_1 :: b_1 \rightarrow d_1$ \uparrow d_2

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:

« From an initial state s_0 , is it possible to reach a state s_n where a_i is active? » Approximations: P and Q, built so that $P \Rightarrow R \Rightarrow Q$

Polynomial complexity in the number of sorts Exponential complexity in the number of processes in each sort

 \rightarrow Efficient for big models with few expression levels

Implementation & Execution times

PINT**: Existing free OCaml library**

- \rightarrow Compiler + tools for Process Hitting models
- \rightarrow Documentation & examples: <https://github.com/pauleve/pint>

Implementation & Execution times

PINT**: Existing free OCaml library**

- \rightarrow Compiler + tools for Process Hitting models
- \rightarrow Documentation & examples: <https://github.com/pauleve/pint>

Computation time for various reachability analyses:

 $^{\rm 1}$ Inria Paris-Rocquencourt/Contraintes

² LIP6/Move

egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]

egfr104 : Epithelial Growth Factor Receptor (104 components) [Samaga et al., 2009]

tcrsig40 : T-Cell Receptor (40 composants) [Klamt et al., 2006]

tcrsig94 : T-Cell Receptor (94 composants) [Saez-Rodriguez et al., 2007]

Sufficient condition:

- no cycle
- • each objective has a solution

Sufficient condition:

- no cycle
- each objective has a solution

R is **true**

Necessary condition:

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- • process \rightarrow follow all objectives

Necessary condition:

There exists a traversal with no cycle

- \bullet objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- • process \rightarrow follow all objectives

Necessary condition:

There exists a traversal with no cycle

- \bullet objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

R is **false**

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- • process \rightarrow follow all objectives

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

Inconclusive

Cut sets

[Paulevé, Andrieux, Koeppl in Computer Aided Verification, 2013.]

Cut set = set of nodes whose knockout is sufficient to turn off some outputs

- "Absolute" vision of possible perturbations
- Need for an intermediate point of view \rightarrow Finer analysis

Cut sets

[Paulevé, Andrieux, Koeppl in Computer Aided Verification, 2013.]

Cut set = set of nodes whose knockout is sufficient to turn off some outputs

- "Absolute" vision of possible perturbations
- Need for an intermediate point of view \rightarrow Finer analysis

Cut sets

[Paulevé, Andrieux, Koeppl in Computer Aided Verification, 2013.]

Cut set = set of nodes whose knockout is sufficient to turn off some outputs

- "Absolute" vision of possible perturbations
- Need for an intermediate point of view \rightarrow Finer analysis

[Perturbations and Recovery Costs in BRNs with PH](#page-0-0) ○ [Possible leads](#page-84-0)

Detailed application of the Static Analysis

Graph of local causality:

 $|c_2|$

Sufficient condition:

- no cycle
- each objective has a solution
- no contradiction between synchronous requirements

Sufficient condition:

- no cycle
- each objective has a solution
- no contradiction between synchronous requirements

Graph of local causality:

Sufficient condition:

- no cycle
- each objective has a solution
- no contradiction between synchronous requirements

Graph of local causality:

OK

 $|c_0|$

Sufficient condition:

- no cycle
- each objective has a solution
- no contradiction between synchronous requirements

Graph of local causality:

Sufficient condition:

- no cycle
- each objective has a solution
- no contradiction between synchronous requirements

Graph of local causality:

Sufficient condition:

- no cycle
- each objective has a solution
- no contradiction between synchronous requirements

Graph of local causality:

Sufficient condition:

- no cycle
- each objective has a solution
- no contradiction between synchronous requirements

Graph of local causality:

Sufficient condition:

- no cycle
- each objective has a solution
- no contradiction between synchronous requirements

Graph of local causality:

Sufficient condition:

- no cycle
- each objective has a solution
- no contradiction between synchronous requirements

Graph of local causality:

Sufficient condition:

- no cycle
- each objective has a solution
- • no contradiction between synchronous requirements

Sufficient condition:

- no cycle
- each objective has a solution
- • no contradiction between synchronous requirements

Sufficient condition:

- no cycle
- each objective has a solution
- no contradiction between synchronous requirements

Graph of local causality:

Sufficient condition:

- no cycle
- each objective has a solution
- no contradiction between synchronous requirements

Graph of local causality:

Sufficient condition:

- no cycle
- each objective has a solution
- no contradiction between synchronous requirements

Graph of local causality:

Sufficient condition:

- no cycle
- each objective has a solution
- no contradiction between synchronous requirements

Graph of local causality:

Sufficient condition:

- no cycle
- each objective has a solution
- no contradiction between synchronous requirements

Graph of local causality:

Alternative Paths

Provided that the computed path is minimal, new properties emerge:

Alternative Paths

Provided that the computed path is minimal, new properties emerge:

- \rightarrow Some components have no impact
	- They do not appear in the graph of local causality
	- Initial states do not depend on them
	- Simplifies the research
Alternative Paths

Provided that the computed path is minimal, new properties emerge:

- \rightarrow Some components have no impact
	- They do not appear in the graph of local causality
	- Initial states do not depend on them
	- Simplifies the research
- \rightarrow Knocking out a component in a path may reveal an alternative path
	- Resilience ⇒ existence of alternative paths (cf. cut sets)
	- New path \Rightarrow New costs or new delays

Conclusion

The Process Hitting allows to represent biological regulatory networks:

- Qualitative and atomistic modeling
- Existing efficient **reachability analysis**
- Links with other formalisms \rightarrow especially from Thomas' modeling

Conclusion

The Process Hitting allows to represent biological regulatory networks:

- Qualitative and atomistic modeling
- Existing efficient **reachability analysis**
- Links with other formalisms \rightarrow especially from Thomas' modeling

The **impact degree**:

- Quantification of the importance of a component
- Highlights possible recovery paths
- But limited to the presence/absence of a component

Conclusion

The Process Hitting allows to represent biological regulatory networks:

- Qualitative and atomistic modeling
- Existing efficient **reachability analysis**
- Links with other formalisms \rightarrow especially from Thomas' modeling

The **impact degree**:

- Quantification of the importance of a component
- Highlights possible recovery paths
- But limited to the presence/absence of a component

Quantification of the perturbation using Process Hitting:

- Adapted notion of **impact degree** (multiple values)
- Thanks to the powerful **reachability analysis**
- Additional properties with the graph of local causality

[Perturbations and Recovery Costs in BRNs with PH](#page-0-0) ○ [Possible leads](#page-112-0)

Thank you!

Do you have questions

or suggestions?

Bibliography

• Hao Jiang, Takeyuki Tamura, Wai-Ki Ching and Tatsuya Akutsu. On the Complexity of Inference and Completion of Boolean Networks from Given Singleton Attractors. In IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E96.A, n. 11, pages 2265–74, 2013.

• Jean-Paul Comet and Gilles Bernot. Introducing continuous time in discrete models of gene regulatory networks. In Proceedings of the Nice Spring school on Modelling and simulation of biological processes in the context of genomics, EDP Sciences, 2010.

• Loïc Paulevé, Geoffroy Andrieux and Heinz Koeppl. Under-approximating cut sets for reachability in large scale automata networks. In Natasha Sharygina and Helmut Veith, editors, Computer Aided Verification, volume 8044 of Lecture Notes in Computer Science, pages 69–84. Springer Berlin Heidelberg, 2013.

Cooperations

Cooperations

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0$ $\uparrow z_1$

Cooperations

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0$ $\uparrow z_1$

Cooperations

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0$ $\uparrow z_1$

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0$ $\uparrow z_1$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_1$

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Solution: a **cooperative sort** ab to express $a_1 \wedge b_1$

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0$ $\uparrow z_1$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_1$

Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0$ $\uparrow z_1$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_1$ Each configuration is represented by one process $a_1 \wedge b_1 \Rightarrow ab_{11}$

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0$ $\uparrow z_1$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_1$ Each configuration is represented by one process $a_1 \wedge b_1 \Rightarrow ab_{11}$

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0$ $\uparrow z_1$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_1$ Each configuration is represented by one process $a_1 \wedge b_1 \Rightarrow ab_{11}$

Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0$ $\uparrow z_1$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_1$ Each configuration is represented by one process $a_1 \wedge b_1 \Rightarrow ab_{11}$

Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0$ $\uparrow z_1$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_1$ Each configuration is represented by one process $a_1 \wedge b_1 \Rightarrow ab_{11}$

Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0$ $\uparrow z_1$ Solution: a **cooperative sort** ab to express $a_1 \wedge b_1$ Each configuration is represented by one process $a_1 \wedge b_1 \Rightarrow ab_{11}$

Static Analysis: Fixed Points

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Fixed point = state where no action can be fired

 \rightarrow avoid couples of processes bounded by an action

Static Analysis: Fixed Points

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph

Static Analysis: Fixed Points

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow **n-cliques** = fixed points

Static Analysis: Fixed Points

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow **n-cliques** = fixed points

Static Analysis: Fixed Points

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow **n-cliques** = fixed points

Static Analysis: Fixed Points

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Fixed point = state where no action can be fired

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow **n-cliques** = fixed points

Exponential complexity w.r.t. the number of sorts