Public seminar of team Lifeware

Modeling and analysis of large regulatory networks with the Process Hitting framework

Maxime FOLSCHETTE

FMV team / Department of Electronics & Informatics / University of Kassel maxime.folschette@uni-kassel.de http://maxime.folschette.name/

2015/04/01

Modeling a system is the first step towards its comprehension

Modeling a system is the first step towards its comprehension

The required analysis has an impact on modeling

• The modeling tools must be adapted to the observed properties

Modeling a system is the first step towards its comprehension

The required analysis has an impact on modeling

• The modeling tools must be adapted to the observed properties

Modeling choices have an impact on the results of the analysis

- The level of details changes the quantity of obtained info
- The size of the model increases the analysis duration

Modeling a system is the first step towards its comprehension

The required analysis has an impact on modeling

• The modeling tools must be adapted to the observed properties

Modeling choices have an impact on the results of the analysis

- The level of details changes the quantity of obtained info
- The size of the model increases the analysis duration

The modeling and analysis steps of a system are strongly linked

Overview of This Presentation

State of the Art of the modeling of biological regulatory networks

- Discrete asynchronous representations and Thomas modeling
- Standard Process Hitting

Overview of This Presentation

State of the Art of the modeling of biological regulatory networks

- Discrete asynchronous representations and Thomas modeling
- Standard Process Hitting

Enriching the Process Hitting

- Integration of temporal constraints
- Synchronicity between actions
 - \rightarrow Adding of priorities, neutralizing edges or synchronous actions

Overview of This Presentation

State of the Art of the modeling of biological regulatory networks

- Discrete asynchronous representations and Thomas modeling
- Standard Process Hitting

Enriching the Process Hitting

- Integration of temporal constraints
- Synchronicity between actions
 - \rightarrow Adding of priorities, neutralizing edges or synchronous actions

Analysis of the Process Hitting

- Correction of the cooperative sorts
- Static analysis of reachability
- Equivalences and links with other formalisms

Abstractions of the Representation

Abstractions of the Representation

© 2012 Pearson Education, Inc.

[Richard, Comet, Bernot (tutorial), 2008]

[Richard, Comet, Bernot (tutorial), 2008]

[Richard, Comet, Bernot (tutorial), 2008]

• Unknown real values of concentrations or continuous activity levels \rightarrow Abstracted as thresholds or **discrete levels**

[Richard, Comet, Bernot (tutorial), 2008]

- Unknown real values of concentrations or continuous activity levels
 → Abstracted as thresholds or discrete levels
- Continuous variations of the real values
 - \rightarrow Unitary dynamics

[Richard, Comet, Bernot (tutorial), 2008]

- Unknown real values of concentrations or continuous activity levels
 - \rightarrow Abstracted as thresholds or discrete levels
- Continuous variations of the real values
 - \rightarrow Unitary dynamics
- Simultaneous crossings of two thresholds never occurs
 - → Asynchronous dynamics

[Kauffman in Journal of Theoretical Biology, 1969] [Thomas in Journal of Theoretical Biology, 1973]

• A set of components $N = \{a, b, z\}$

[Kauffman in Journal of Theoretical Biology, 1969] [Thomas in Journal of Theoretical Biology, 1973]

- A set of components $N = \{a, b, z\}$
- A set of discrete expression levels for each component $z \in \mathbb{F}^z = [0; 2]$
- The set of global states $\mathbb{F} = \mathbb{F}^a \times \mathbb{F}^b \times \mathbb{F}^z$

[Kauffman in Journal of Theoretical Biology, 1969] [Thomas in Journal of Theoretical Biology, 1973]

- A set of components $N = \{a, b, z\}$
- A set of discrete expression levels for each component $z \in \mathbb{F}^z = [0; 2]$
- The set of global states $\mathbb{F} = \mathbb{F}^a \times \mathbb{F}^b \times \mathbb{F}^z$
- An evolution function for each component $f^z : \mathbb{F} \to \mathbb{F}^z$

[Kauffman in Journal of Theoretical Biology, 1969] [Thomas in Journal of Theoretical Biology, 1973]

- A set of components $N = \{a, b, z\}$
- A set of discrete expression levels for each component $z \in \mathbb{F}^z = [0; 2]$
- The set of global states $\mathbb{F} = \mathbb{F}^a \times \mathbb{F}^b \times \mathbb{F}^z$
- An evolution function for each component $f^z : \mathbb{F} \to \mathbb{F}^z$
- Signs and thresholds on the edges $a \xrightarrow{+1} z$

Analysis of Thomas Modeling

The State graph is computed in a unitary and asynchronous fashion

 \rightarrow Exponential size in the number of components

Analysis of Thomas Modeling

The State graph is computed in a unitary and asynchronous fashion

\rightarrow **Exponential** size in the number of components

Some works all to link the structure of the model and some dynamic properties:

- Thomas' conjectures (conditions for multi-stationarity or sustained oscillations)
 - Boolean case: [Remy, Ruet, Thieffry in Advances in Applied Mathematics, 2008]
 - Multivalued case: [Richard, Comet in Discrete Applied Mathematics, 2007]

Analysis of Thomas Modeling

The State graph is computed in a unitary and asynchronous fashion

\rightarrow Exponential size in the number of components

Some works all to link the structure of the model and some dynamic properties:

- Thomas' conjectures (conditions for multi-stationarity or sustained oscillations)
 - Boolean case: [Remy, Ruet, Thieffry in Advances in Applied Mathematics, 2008]
 - Multivalued case: [Richard, Comet in Discrete Applied Mathematics, 2007]

But reachability properties require to compute the whole state graph: Example: From the initial state (a, b, z) = (0, 0, 0), is it possible to reach z = 2?

- Temporal logics
 - CTL: [Bernot, Comet, Richard, Guespin in Journal of Theoretical Biology, 2004]
 - LTL: [Ito, Izumi, Hagihara, Yonezaki in BioInformatics and BioEngineering, 2010]

Standard Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Standard Process Hitting is:

- Well-adapted to the modeling of BRNs
- An atomistic and qualitative modeling (explicit & discrete expression levels)
- Simple but powerful dynamics (constraints on the form of actions)

Standard Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Standard Process Hitting is:

- Well-adapted to the modeling of BRNs
- An atomistic and qualitative modeling (explicit & discrete expression levels)
- Simple but powerful dynamics (constraints on the form of actions)

Previously developed tools:

- Reachability analysis by abstract interpretation
- Fixed points enumeration
- Stochastic parameters
- \rightarrow Well-adapted formalism to study large BRNs

Standard Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Standard Process Hitting is:

- Well-adapted to the modeling of BRNs
- An atomistic and qualitative modeling (explicit & discrete expression levels)
- Simple but powerful dynamics (constraints on the form of actions)

Previously developed tools:

- Reachability analysis by abstract interpretation
- Fixed points enumeration
- Stochastic parameters
- \rightarrow Well-adapted formalism to study large BRNs

Several missing features:

- Faulty representation cooperations
- Possible enrichment of the expressivity
 - \rightarrow Which requires to adapt the previous tools

Standard Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z

Standard Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z Processes: local states / discrete expression levels z₀, z₁, z₂

Standard Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Sorts: components *a*, *b*, *z* **Processes**: local states / discrete expression levels z_0 , z_1 , z_2 **States**: sets of active processes $\langle a_0, b_1, z_0 \rangle$

Standard Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Sorts: components *a*, *b*, *z* **Processes:** local states / discrete expression levels *z*₀, *z*₁, *z*₂ **States:** sets of active processes $\langle a_0, b_1, z_0 \rangle$ **Actions:** dynamics $b_1 \rightarrow z_0 \upharpoonright z_1, a_0 \rightarrow a_0 \upharpoonright a_1, a_1 \rightarrow z_1 \upharpoonright z_2$

Standard Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Sorts: componentsa, b, zProcesses: local states / discrete expression levels z_0 , z_1 , z_2 States: sets of active processes $\langle a_0, b_1, z_0 \rangle$ Actions: dynamics $b_1 \rightarrow z_0$ i² z_1 , $a_0 \rightarrow a_0$ i² a_1 , $a_1 \rightarrow z_1$ i² z_2

Standard Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Sorts: components *a*, *b*, *z* **Processes:** local states / discrete expression levels *z*₀, *z*₁, *z*₂ **States:** sets of active processes $\langle a_0, b_1, z_1 \rangle$ **Actions:** dynamics $b_1 \rightarrow z_0 \upharpoonright z_1, a_0 \rightarrow a_0 \upharpoonright a_1, a_1 \rightarrow z_1 \upharpoonright z_2$

Standard Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Sorts: components *a*, *b*, *z* **Processes:** local states / discrete expression levels *z*₀, *z*₁, *z*₂ **States:** sets of active processes $\langle a_1, b_1, z_1 \rangle$ **Actions:** dynamics $b_1 \rightarrow z_0 \uparrow^z z_1$, $a_0 \rightarrow a_0 \uparrow^z a_1$, $a_1 \rightarrow z_1 \uparrow^z z_2$

Standard Process Hitting

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Sorts: components *a*, *b*, *z* **Processes:** local states / discrete expression levels z_0 , z_1 , z_2 **States:** sets of active processes $\langle a_1, b_1, z_2 \rangle$ **Actions:** dynamics $b_1 \rightarrow z_0 \downarrow^z z_1$, $a_0 \rightarrow a_0 \downarrow^z a_1$, $a_1 \rightarrow z_1 \uparrow^z z_2$

Cooperations

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0 \lor z_1$

Cooperations

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0 \upharpoonright z_1$

Cooperations

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0 \lor z_1$
Cooperations

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperation between a_1 and b_1 : $a_1 \wedge b_1 \rightarrow z_0 \not i z_1$

Cooperations

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperations

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperations

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperations

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperations

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperations

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperations

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperations

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperations

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Cooperations

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Check reachability properties:

« From an initial state s_0 , is it possible to reach a state s_n where a_i is active? » Approximations: P and Q, built so that $P \Rightarrow R \Rightarrow Q$

Polynomial complexity in the number of sorts Exponential complexity in the number of processes in each sort

 \rightarrow Efficient for big models with few expression levels

Modeling and analysis of large RN with the PH framework o Enriching the Process Hitting

Modeling and analysis of large RN with the PH framework o Enriching the Process Hitting

Permissiveness of the Standard Dynamics

Process Hitting with Classes of Priorities

Addition of classes of priorities

- Each action is associated to a discrete priority
- An action is playable only if no other action with higher priority is playable

Addition of classes of priorities

- Each action is associated to a discrete priority
- An action is playable only if no other action with higher priority is playable

Use of the Classes of Priorities

Use of the Classes of Priorities

Use of the Classes of Priorities

Abstraction of Temporal Parameters

[Paulevé (PhD thesis), 2011]

• Simulation with stochastic parameters:

• Other possible analysis: stochastic model checkers (PRISM)

ightarrow But combinatoric explosion: PRISM fails for more than 5 components
Addition of classes of priorities

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

- Each action is associated to a discrete priority
- An action is playable only if no other action with higher priority is playable

· Allow to model classes of actions with similar speeds or temporal parameters

Limitation of the Classes of Priorities

Limitation of the Classes of Priorities

Limitation of the Classes of Priorities

Modeling and analysis of large RN with the PH framework o Enriching the Process Hitting o Neutralizing Edges

Process Hitting with Neutralizing Edges

Addition of Neutralizing Edges

- Integration of temporal data about relative reaction speeds
- Atomistic preemptions between actions similar to "atomistic priorities"

 $c_0
ightarrow d_0
ightarrow d_1$ cannot be plays while

- $a_0 \rightarrow b_0
 ightharpoonup b_1$ is playable
- $ightarrow d_1$ is always reached after b_1

Addition of Neutralizing Edges

- Integration of temporal data about relative reaction speeds
- Atomistic preemptions between actions similar to "atomistic priorities"

 $c_0
ightarrow d_0
ightarrow d_1$ cannot be plays while

- $a_0 \rightarrow b_0
 ightharpoonup b_1$ is playable
- $ightarrow d_1$ is always reached after b_1

Addition of Neutralizing Edges

- Integration of temporal data about relative reaction speeds
- Atomistic preemptions between actions similar to "atomistic priorities"

 $c_0
ightarrow d_0
ightarrow d_1$ cannot be plays while

- $a_0 \rightarrow b_0
 ightharpoonup b_1$ is playable
- $ightarrow d_1$ is always reached after b_1

Modeling and analysis of large RN with the PH framework o Enriching the Process Hitting o Neutralizing Edges

Use of Neutralizing Edges

Modeling and analysis of large RN with the PH framework o Enriching the Process Hitting o Synchronous Actions

Process Hitting with Synchronous Actions

Addition of Synchronous Actions

- Synchronizations between actions:
 - All catalysts must be present
 - Reactants are consumed all together
 - Simultaneous creation of the products
- Representation of biochemical equations:

$$X \xrightarrow{Y} Z$$

under the form:

$$h_2 = \{x_1, y_1, z_0\} \rightarrowtail \{x_0, z_1\}$$

All processes of A must be present to play $A \rightarrow B$

After the play of $A \rightarrow B$, all processes of B are present

Addition of Synchronous Actions

- Synchronizations between actions:
 - All catalysts must be present
 - Reactants are consumed all together
 - Simultaneous creation of the products
- Representation of biochemical equations:

$$X \xrightarrow{Y} Z$$

under the form:

$$h_2 = \{x_1, y_1, z_0\} \rightarrowtail \{x_0, z_1\}$$

All processes of A must be present to play $A \rightarrow B$

After the play of $A \rightarrow B$, all processes of B are present

Addition of Synchronous Actions

- Synchronizations between actions:
 - All catalysts must be present
 - Reactants are consumed all together
 - Simultaneous creation of the products
- Representation of biochemical equations:

$$X \xrightarrow{Y} Z$$

under the form:

$$h_2 = \{x_1, y_1, z_0\} \rightarrowtail \{x_0, z_1\}$$

All processes of A must be present to play $A \rightarrow B$

After the play of $A \rightarrow B$, all processes of B are present

Modeling and analysis of large RN with the PH framework o Enriching the Process Hitting o Synchronous Actions

Use of Synchronous Actions

Temporal Shift in Cooperative Sorts

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Temporal Shift in Cooperative Sorts

[Folschette et al. in_Workshop on Interactions between Computer Science and Biology, 2013]

Temporal Shift in Cooperative Sorts

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Temporal Shift in Cooperative Sorts

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Temporal Shift in Cooperative Sorts

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Drawback: the cooperative sorts are too "loose" (temporal shift) $\langle a_0, b_0, ab_{00}, z_0 \rangle$

Temporal Shift in Cooperative Sorts

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Drawback: the cooperative sorts are too "loose" (temporal shift) $\langle a_0, b_0, ab_{00}, z_0 \rangle$

Temporal Shift in Cooperative Sorts

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Drawback: the cooperative sorts are too "loose" (temporal shift) $\langle a_0, b_0, ab_{00}, z_0 \rangle \rightarrow \langle a_1, b_0, ab_{00}, z_0 \rangle$

Temporal Shift in Cooperative Sorts

[Folschette et al. in_Workshop on Interactions between Computer Science and Biology, 2013]

Drawback: the cooperative sorts are too "loose" (temporal shift) $\langle a_0, b_0, ab_{00}, z_0 \rangle \rightarrow \langle a_1, b_0, ab_{00}, z_0 \rangle \rightarrow \langle a_1, b_0, ab_{10}, z_0 \rangle$

Temporal Shift in Cooperative Sorts

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

$$\langle \mathsf{a}_0, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{00}, \mathsf{z}_0 \rangle \rightarrow \langle \mathsf{a}_1, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{00}, \mathsf{z}_0 \rangle \rightarrow \langle \mathsf{a}_1, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{10}, \mathsf{z}_0 \rangle \rightarrow \langle \mathsf{a}_0, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{10}, \mathsf{z}_0 \rangle$$

Temporal Shift in Cooperative Sorts

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

$$\begin{array}{l} \langle \mathsf{a}_0, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{00}, \mathsf{z}_0 \rangle \to \langle \mathsf{a}_1, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{00}, \mathsf{z}_0 \rangle \to \langle \mathsf{a}_1, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{10}, \mathsf{z}_0 \rangle \to \langle \mathsf{a}_0, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{10}, \mathsf{z}_0 \rangle \\ \to \langle \mathsf{a}_0, \mathsf{b}_1, \mathsf{a}\mathsf{b}_{10}, \mathsf{z}_0 \rangle \end{array}$$

Temporal Shift in Cooperative Sorts

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

$$\begin{array}{l} \langle \mathsf{a}_0, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{00}, \mathsf{z}_0 \rangle \to \langle \mathsf{a}_1, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{00}, \mathsf{z}_0 \rangle \to \langle \mathsf{a}_1, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{10}, \mathsf{z}_0 \rangle \to \langle \mathsf{a}_0, \mathsf{b}_1, \mathsf{a}\mathsf{b}_{10}, \mathsf{z}_0 \rangle \\ \to \langle \mathsf{a}_0, \mathsf{b}_1, \mathsf{a}\mathsf{b}_{10}, \mathsf{z}_0 \rangle \to \langle \mathsf{a}_0, \mathsf{b}_1, \mathsf{a}\mathsf{b}_{11}, \mathsf{z}_0 \rangle \end{array}$$

Temporal Shift in Cooperative Sorts

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Drawback: the cooperative sorts are too "loose" (temporal shift)

$$\begin{array}{l} \langle \mathsf{a}_0, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{00}, \mathsf{z}_0 \rangle \to \langle \mathsf{a}_1, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{00}, \mathsf{z}_0 \rangle \to \langle \mathsf{a}_1, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{10}, \mathsf{z}_0 \rangle \to \langle \mathsf{a}_0, \mathsf{b}_1, \mathsf{a}\mathsf{b}_{10}, \mathsf{z}_0 \rangle \\ \to \langle \mathsf{a}_0, \mathsf{b}_1, \mathsf{a}\mathsf{b}_{10}, \mathsf{z}_0 \rangle \to \langle \mathsf{a}_0, \mathsf{b}_1, \mathsf{a}\mathsf{b}_{11}, \mathsf{z}_1 \rangle \to \langle \mathsf{a}_0, \mathsf{b}_1, \mathsf{a}\mathsf{b}_{11}, \mathsf{z}_1 \rangle \end{array}$$

Expected behavior: $a_1 \wedge b_1$ simultaneously i.e. "in the same state" Obtained behavior: $P(a_1) \wedge P(b_1)$ with P = "previously"

Canonical Process Hitting

- Primary actions (updating cooperative sorts) ightarrow 1) non-biological / non-controllable actions
- Secondary actions (all the other ones) → (2) biological / controllable actions / with delays

Canonical Process Hitting

- Primary actions (updating cooperative sorts) ightarrow 1) non-biological / non-controllable actions
- Secondary actions (all the other ones) → (2) biological / controllable actions / with delays
- \Rightarrow Whenever a secondary action is played, all cooperative sorts are already updated

Canonical Process Hitting

- Primary actions (updating cooperative sorts) ightarrow 1) non-biological / non-controllable actions
- Secondary actions (all the other ones) → ② biological / controllable actions / with delays
- \Rightarrow Whenever a secondary action is played, all cooperative sorts are already updated

```
\langle a_0, b_0, ab_{00}, z_0 \rangle
```

Canonical Process Hitting

- Primary actions (updating cooperative sorts) ightarrow 1) non-biological / non-controllable actions
- Secondary actions (all the other ones) → (2) biological / controllable actions / with delays
- \Rightarrow Whenever a secondary action is played, all cooperative sorts are already updated

$$\langle a_0, b_0, ab_{00}, z_0 \rangle \rightarrow \langle a_1, b_0, ab_{00}, z_0 \rangle$$

Canonical Process Hitting

[Folschette et al. in_Workshop on Interactions between Computer Science and Biology, 2013]

- Primary actions (updating cooperative sorts) ightarrow (1) non-biological / non-controllable actions
- Secondary actions (all the other ones) \rightarrow (2) biological / controllable actions / with delays
- \Rightarrow Whenever a secondary action is played, all cooperative sorts are already updated

 $\langle a_0, b_0, ab_{00}, z_0 \rangle \rightarrow \langle a_1, b_0, ab_{00}, z_0 \rangle \rightarrow \langle a_1, b_0, ab_{10}, z_0 \rangle$

Canonical Process Hitting

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

- Primary actions (updating cooperative sorts) ightarrow 1) non-biological / non-controllable actions
- Secondary actions (all the other ones) \rightarrow (2) biological / controllable actions / with delays
- \Rightarrow Whenever a secondary action is played, all cooperative sorts are already updated

 $\langle \mathsf{a}_0, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{00}, \mathsf{z}_0 \rangle \rightarrow \langle \mathsf{a}_1, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{00}, \mathsf{z}_0 \rangle \rightarrow \langle \mathsf{a}_1, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{10}, \mathsf{z}_0 \rangle \rightarrow \langle \mathsf{a}_0, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{10}, \mathsf{z}_0 \rangle$

Canonical Process Hitting

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

- Primary actions (updating cooperative sorts) ightarrow 1) non-biological / non-controllable actions
- Secondary actions (all the other ones) → (2) biological / controllable actions / with delays
- \Rightarrow Whenever a secondary action is played, all cooperative sorts are already updated

$$\begin{array}{l} \langle \mathsf{a}_0, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{00}, \mathsf{z}_0 \rangle \to \langle \mathsf{a}_1, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{00}, \mathsf{z}_0 \rangle \to \langle \mathsf{a}_1, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{10}, \mathsf{z}_0 \rangle \to \langle \mathsf{a}_0, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{10}, \mathsf{z}_0 \rangle \\ \to \langle \mathsf{a}_0, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{00}, \mathsf{z}_0 \rangle \end{array}$$

Maxime FOLSCHETTE

Canonical Process Hitting

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

- Primary actions (updating cooperative sorts) ightarrow 1) non-biological / non-controllable actions
- Secondary actions (all the other ones) → ② biological / controllable actions / with delays
- \Rightarrow Whenever a secondary action is played, all cooperative sorts are already updated

$$\begin{array}{l} \langle a_0, b_0, ab_{00}, z_0 \rangle \rightarrow \langle a_1, b_0, ab_{00}, z_0 \rangle \rightarrow \langle a_1, b_0, ab_{10}, z_0 \rangle \rightarrow \langle a_0, b_0, ab_{10}, z_0 \rangle \\ \rightarrow \langle a_0, b_0, ab_{00}, z_0 \rangle \rightarrow \langle a_0, b_1, ab_{00}, z_0 \rangle \end{array}$$

Maxime FOLSCHETTE

Canonical Process Hitting

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

- Primary actions (updating cooperative sorts) ightarrow 1) non-biological / non-controllable actions
- Secondary actions (all the other ones) → ② biological / controllable actions / with delays
- \Rightarrow Whenever a secondary action is played, all cooperative sorts are already updated

 $\begin{array}{l} \langle \mathsf{a}_0, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{00}, \mathsf{z}_0 \rangle \to \langle \mathsf{a}_1, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{00}, \mathsf{z}_0 \rangle \to \langle \mathsf{a}_1, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{10}, \mathsf{z}_0 \rangle \to \langle \mathsf{a}_0, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{10}, \mathsf{z}_0 \rangle \\ \to \langle \mathsf{a}_0, \mathsf{b}_0, \mathsf{a}\mathsf{b}_{00}, \mathsf{z}_0 \rangle \to \langle \mathsf{a}_0, \mathsf{b}_1, \mathsf{a}\mathsf{b}_{00}, \mathsf{z}_0 \rangle \to \langle \mathsf{a}_0, \mathsf{b}_1, \mathsf{a}\mathsf{b}_{01}, \mathsf{z}_0 \rangle \end{array}$

Maxime FOLSCHETTE
Canonical Process Hitting with Synchronous Actions

- Equivalent dynamics
- Sub-class of synchronous automata networks
- No priorities (no ill-formed model)
- No interfering updates and less intertwining

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Adding priorities restricts the possible dynamics (preemptions)

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Adding priorities restricts the possible dynamics (preemptions)

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Adding priorities restricts the possible dynamics (preemptions)

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Adding priorities restricts the possible dynamics (preemptions)

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Adding priorities restricts the possible dynamics (preemptions)

 \rightarrow Invalidates the previous under-approximation

Similar complexity for a more expressive formalism

- \rightarrow Still efficient for big models
- \rightarrow Finer under-approximation

Static Analysis of Canonical Process Hitting

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Static Analysis of Canonical Process Hitting

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Static Analysis of Canonical Process Hitting

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Static Analysis of Canonical Process Hitting

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Sufficient condition:

Maxime FOLSCHETTE

Static Analysis of Canonical Process Hitting

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Static Analysis of Canonical Process Hitting

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Static Analysis of Canonical Process Hitting

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Implementation of the Static Analysis Into PINT

Complexity:

- Computation of the local causality graph:
 - · Polynomial in the number of sorts
 - Exponential in the number of processes of each sort
- Analysis of the graph (sufficient condition):
 - Polynomial in the size of the graph

Implementation of the Static Analysis Into PINT

Complexity:

- Computation of the local causality graph:
 - · Polynomial in the number of sorts
 - Exponential in the number of processes of each sort
- Analysis of the graph (sufficient condition):
 - Polynomial in the size of the graph

Modèle	Sortes	Processus	Actions	États	libddd ¹	GINsim ²	PINT
egfr20	35	196	670	2 ⁶⁴		<1s	0.02s
tcrsig40	54	156	301	2 ⁷³		∞	0.02s
tcrsig94	133	448	1124	2 ¹⁹⁴	$[13min - \infty]$		0.03s
egfr104	193	748	2356	2 ³²⁰			0.16s

Makes the study of large networks tractable:

¹ LIP6/Move [Couvreur et al., Lecture Notes in Computer Science, 2002]

² TAGC/IGC [Chaouiya, Naldi, Thieffry, Methods in Molecular Biology, 2012]

egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]

egfr104 : Epithelial Growth Factor Receptor (104 components) [Samaga et al., 2009]

tcrsig40 : T-Cell Receptor (40 composants) [Klamt et al., 2006]

tcrsig94 : T-Cell Receptor (94 composants) [Saez-Rodriguez et al., 2007]

Maxime FOLSCHETTE

 \rightarrow Same dynamics (with supplemental cooperative sorts)

 \rightarrow The canonical form can be computed for all Process Hitting extensions, with classes of priorities, neutralizing edges or synchronous actions

- Expressive power improved
- Can always be translated to the canonical form
- But sometimes at the cost of an exponential translation

- Expressive power improved
- Can always be translated to the canonical form
- But sometimes at the cost of an exponential translation

- Expressive power improved
- Can always be translated to the canonical form
- But sometimes at the cost of an exponential translation

- Expressive power improved
- Can always be translated to the canonical form
- But sometimes at the cost of an exponential translation

- Expressive power improved
- Can always be translated to the canonical form
- But sometimes at the cost of an exponential translation

- Equivalence with discrete networks / Thomas modeling
- Equivalence with synchronous automata networks
- Translation towards (bounded) Petri nets with inhibitor arcs
- Translation from the Boolean semantics of Biocham

- Equivalence with discrete networks / Thomas modeling
- Equivalence with synchronous automata networks
- Translation towards (bounded) Petri nets with inhibitor arcs
- Translation from the Boolean semantics of Biocham

- Equivalence with discrete networks / Thomas modeling
- Equivalence with synchronous automata networks
- Translation towards (bounded) Petri nets with inhibitor arcs
- Translation from the Boolean semantics of Biocham

- Equivalence with discrete networks / Thomas modeling
- Equivalence with synchronous automata networks
- Translation towards (bounded) Petri nets with inhibitor arcs
- Translation from the Boolean semantics of Biocham

- Equivalence with discrete networks / Thomas modeling
- Equivalence with synchronous automata networks
- Translation towards (bounded) Petri nets with inhibitor arcs
- Translation from the Boolean semantics of Biocham
Inferring a BRN with Thomas' parameters

Inferring a BRN with Thomas' parameters

Inferring a BRN with Thomas' parameters

- \rightarrow Exhaustive search in all possible configurations
- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.

- \rightarrow Exhaustive search in all possible configurations
- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.
- 2. Change the active process of the regulator $[a_0, a_1]$ and watch the evolution.

- \rightarrow Exhaustive search in all possible configurations
- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.
- 2. Change the active process of the regulator $[a_0, a_1]$ and watch the evolution.

- \rightarrow Exhaustive search in all possible configurations
- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.
- 2. Change the active process of the regulator $[a_0, a_1]$ and watch the evolution.

- \rightarrow Exhaustive search in all possible configurations
- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.
- 2. Change the active process of the regulator $[a_0, a_1]$ and watch the evolution.

- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.
- 2. Change the active process of the regulator $[a_0, a_1]$ and watch the evolution.
- 3. Conclude locally: $(a_0 \upharpoonright a_1 \Rightarrow z_0 \upharpoonright z_2) \Rightarrow \text{activation} (+) \& \text{threshold} = 1.$

- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.
- 2. Change the active process of the regulator $[a_0, a_1]$ and watch the evolution.
- 3. Conclude locally: $(a_0 \upharpoonright a_1 \Rightarrow z_0 \upharpoonright z_2) \Rightarrow \text{activation} (+) \& \text{threshold} = 1.$
- 4. Iterate

- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.
- 2. Change the active process of the regulator $[a_0, a_1]$ and watch the evolution.
- 3. Conclude locally: $(a_0 \upharpoonright a_1 \Rightarrow z_0 \upharpoonright z_2) \Rightarrow \text{activation} (+) \& \text{threshold} = 1.$
- 4. Iterate

- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.
- 2. Change the active process of the regulator $[a_0, a_1]$ and watch the evolution.
- 3. Conclude locally: $(a_0 \upharpoonright a_1 \Rightarrow z_0 \upharpoonright z_2) \Rightarrow \text{activation} (+) \& \text{threshold} = 1.$
- 4. Iterate

- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.
- 2. Change the active process of the regulator $[a_0, a_1]$ and watch the evolution.
- 3. Conclude locally: $(a_0 \upharpoonright a_1 \Rightarrow z_0 \upharpoonright z_2) \Rightarrow activation (+) \& threshold = 1.$
- 4. Iterate and conclude globally.

\rightarrow Exhaustive search in all possible configurations

- 1. Pick one regulator [a], and choose an active process for all the others $[b_0]$.
- Change the active process of the regulator $[a_0, a_1]$ and watch the **evolution**. 2.
- Conclude locally: $(a_0 \upharpoonright a_1 \Rightarrow z_0 \lor z_2) \Rightarrow \text{activation} (+) \& \text{threshold} = 1.$ 3.
- 4. Iterate and conclude globally.

Problematic cases:

- \rightarrow No focal processes (cycle) \rightarrow Opposite influences (+ & -) $\} \Rightarrow$ Unsigned edge

1. For each configuration of resources $[\omega = \{a^+, b^-\}]$

1. For each configuration of resources $[\omega = \{a^+, b^-\}]$ find the **focal processes**.

1. For each configuration of resources $[\omega = \{a^+, b^-\}]$ find the **focal processes**. If possible, conclude. $[k_{z,\{a^+,b^-\}} = 1]$

1. For each configuration of resources $[\omega = \{a^+, b^-\}]$ find the **focal processes**. If possible, conclude. $[k_{z,\{a^+,b^-\}} = 1]$

Inconclusive cases:

- Behavior cannot be represented as a BRN
- Lack of cooperation (no focal processes)

1. For each configuration of resources $[\omega = \{a^+, b^-\}]$ find the **focal processes**. If possible, conclude. $[k_{z}]_{z^+, b^-} = 1$

Inconclusive cases:

- Behavior cannot be represented as a BRN
- Lack of cooperation (no focal processes)
- 2. If some parameters could not be inferred, enumerate all admissible parametrizations, regarding:
 - Biological constraints [Bernot et al. in Concurrent Models in Molecular Biology, 2007]
 - The dynamics of the Process Hitting

 $[k_{z,\{a^+,b^-\}} \in \{0;1;2\}; \ k_{z,\{a^-,b^+\}} \in \{0;1;2\}]$

Translation to Thomas Modeling

[Folschette et al. in Computational Methods in Systems Biology, 2012]

- Two successive inferences: 1) interaction graph; 2) parameters
- Exhaustive analysis of the local dynamics for each regulator
- enumeration of all parametrizations compatible with the dynamics

Complexity:

Linear in the number of genes, Exponential in the number of regulators of one component

Translation to Thomas Modeling

[Folschette et al. in Computational Methods in Systems Biology, 2012]

- Two successive inferences: 1) interaction graph; 2) parameters
- Exhaustive analysis of the local dynamics for each regulator
- · enumeration of all parametrizations compatible with the dynamics

Complexity:

Linear in the number of genes,

Exponential in the number of regulators of one component

Models				Inference the IG		Inference of parameters	
Name	Sorts	Processes	Actions	Duration	Edges	Durations	Parameters
egfr20	42	152	399	1s	51	1s	192
tcrsig40	54	156	305	1s	55	1s	143
tcrsig94	133	448	1082	100s	197	1s	578
egfr104	193	744	2304	200s	280	3s	27'496

egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]

egfr104 : Epithelial Growth Factor Receptor (104 components) [Samaga et al., 2009]

tcrsig40 : T-Cell Receptor (40 composants) [Klamt et al., 2006]

tcrsig94 : T-Cell Receptor (94 composants) [Saez-Rodriguez et al., 2007]

General Conclusion

Standard Process Hitting allows to represent biological regulatory networks in an **atomistic** fashion:

- Existing efficient static analysis
- But temporal shift issues
- Limited modeling power

Extensions of the Process Hitting to improve the expressivity:

- Rectification of the temporal shift \rightarrow Strictly higher expressivity
- Allows to abstract temporal parameters
- New links to other formalisms (Thomas, PN, etc.)

Static analysis of the Canonical Process Hitting:

- Efficient analysis of reachability properties
- Applicable to the extensions at the cost of a translation
- New kind of property: simultaneous activation

Outlooks

New exploitation possibilities:

- Modeling and analysis of full databases
- Study of uncontrollable behaviors or punctual perturbations
- Research of interesting properties (attractors, oscillations, ...)

Improvement of the static analysis:

- Refining in order to reduce the non-conclusiveness
- New methods using by-products such as the local causality graph
- New properties to check (temporal logic, counters, ...)

Enrichment of the modeling power:

- Abstraction of temporal parameters: find properties to avoid Zeno behavior
- Dynamical classes of priorities
- Guarded actions or complex logic gates
- New model checking tools (Hoare logic, ...)

Modeling and analysis of large RN with the PH framework

Thank you for your attention

Personal Contributions

Book chapter:

• Loïc Paulevé, Courtney Chancellor, Maxime Folschette, Morgan Magnin, Olivier Roux. Analyzing Large Network Dynamics with Process Hitting, In Luis Farinas del Cerro and Katsumi Inoue, editors: *Logical Modeling of Biological Systems*, 2014.

Journal article:

• Maxime Folschette, Loïc Paulevé, Katsumi Inoue, Morgan Magnin, Olivier Roux. Constructing Biological Regulatory Networks from Process Hitting models, *Theoretical Computer Science*, Vol. 586, 2015.

Conference:

• Maxime Folschette, Loïc Paulevé, Morgan Magnin, Olivier Roux. Under-approximation of reachability in multivalued asynchronous networks, CS2Bio'13, *Electronic Notes in Theoretical Computer Science*, Vol. 299, 2013.

Workshops:

• Maxime Folschette, Loïc Paulevé, Katsumi Inoue, Morgan Magnin, Olivier Roux. Concretizing the process hitting into biological regulatory networks, CMSB'12, *Lecture Notes in Computer Science*, 2012.

• Maxime Folschette, Loïc Paulevé, Katsumi Inoue, Morgan Magnin, Olivier Roux. Abducing Biological Regulatory Networks from Process Hitting models, *ECML-PKDD'12 / LDSSB'12*, 2012.

Bibliography

- Adrien Richard, Jean-Paul Comet, Gilles Bernot. R. Thomas' logical method, 2008. Invité à *Tutorials on modelling methods and tools: Modelling a genetic switch and Metabolic Networks*, Spring School on Modelling Complex Biological Systems in the Context of Genomics.
- Stuart A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. *Journal of Theoretical Biology*, 22(3), pages 437–467, 1969.
- René Thomas. Boolean formalization of genetic control circuits. *Journal of Theoretical Biology*, 42(3), pages 563–585, 1973.
- Élisabeth Remy, Paul Ruet and Denis Thieffry. Graphic requirements for multistability and attractive cycles in a boolean dynamical framework. Advances in Applied Mathematics, 41(3), pages 335–350, Elsevier, 2008.
- Adrien Richard, Jean-Paul Comet. Necessary conditions for multistationarity in discrete dynamical systems. *Discrete Applied Mathematics*, 155(18), pages 2403–2413, 2007.
- Gilles Bernot, Jean-Paul Comet, Adrien Richard and Janine Guespin. Application of formal methods to biological regulatory networks: extending Thomas' asynchronous logical approach with temporal logic. *Journal of Theoretical Biology*, 229(3), pages 339–347, Elsevier, 2004.
- Sohei Ito, Naoko Izumi, Shigeki Hagihara and Naoki Yonezaki. Qualitative analysis of gene regulatory networks by satisfiability checking of Linear Temporal Logic. In 2010 IEEE International Conference on *BioInformatics and BioEngineering*, pages 232–237, IEEE, 2010.

Bibliography

- Loïc Paulevé, Morgan Magnin, Olivier Roux. Refining dynamics of gene regulatory networks in a stochastic π -calculus framework. In Corrado Priami, Ralph-Johan Back, Ion Petre, and Erik de Vink, editors: Transactions on Computational Systems Biology XIII, *Lecture Notes in Computer Science* 6575, pages 171–191, 2011.
- Loïc Paulevé, Morgan Magnin, Olivier Roux. Static analysis of biological regulatory networks dynamics using abstract interpretation. Mathematical Structures in Computer Science, 2012.
- Gilles Bernot, Franck Cassez, Jean-Paul Comet, Franck Delaplace, Céline Müller, Olivier Roux. Semantics of Biological Regulatory Networks. Proceedings of the First Workshop on Concurrent Models in Molecular Biology, *Electronic Notes in Theoretical Computer Science* 180(3), pages 3–14, 2007.
- Paul François, Vincent Hakim, Eric D Siggia. Deriving structure from evolution : metazoan segmentation. *Molecular Systems Biology*, 3(1), 2007.
- Özgür Sahin et al. Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Systems Biology, 3(1), 2009.
- Regina Samaga *et al.* The Logic of EGFR/ErbB Signaling: Theoretical Properties and Analysis of High-Throughput Data. *PLoS Computational Biology*, 5(8), 2009.
- Steffen Klamt *et al.* A methodology for the structural and functional analysis of signaling and regulatory networks. *BMC Bioinformatics*, 7(1), 2006.
- Julio Saez-Rodriguez et al. A Logical Model Provides Insights into T Cell Receptor Signaling. *PLoS Computational Biology*, 3(8), 2007.

Stochastic Parameters

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

- Introduction of temporal properties
- Stochastic parameters (r, sa) equivalent to a firing interval [d; D]

Stochastic Parameters

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

- Introduction of temporal properties
- Stochastic parameters (r, sa) equivalent to a firing interval [d; D]

- Simulation \rightarrow not formal
- $\bullet~\textit{Model-checking} \rightarrow High \ complexity \ for an acceptable \ precision$

Use of Stochastic Parameters

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Temporal Simulation

[Paulevé (PhD thesis), 2011]

• Simulation with stochastic parameters:

• Other possible analysis: stochastic model checkers (PRISM)

ightarrow But combinatoric explosion: PRISM fails for more than 5 components

Use of the Classes of Priorities

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

Use of the Classes of Priorities

Use of the Classes of Priorities

Abstraction of Temporal Parameters

[Paulevé (PhD thesis), 2011]

• Simulation with stochastic parameters:

• Other possible analysis: stochastic model checkers (PRISM)

ightarrow But combinatoric explosion: PRISM fails for more than 5 components

Addition of classes of priorities

[Folschette et al. in Workshop on Interactions between Computer Science and Biology, 2013]

- Each action is associated to a discrete priority
- An action is playable only if no other action with higher priority is playable

· Allow to model classes of actions with similar speeds or temporal parameters

Limitation of the Classes of Priorities

Limitation of the Classes of Priorities

Limitation of the Classes of Priorities

Static analysis: successive reachability

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Static analysis: successive reachability

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Static analysis: successive reachability

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Static analysis: successive reachability

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Static analysis: successive reachability

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Successive reachability of processes:

Static analysis: successive reachability

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Successive reachability of processes:

 $\begin{array}{l} \rightarrow \text{ Concretization of the objective} = \text{scenario} \\ a_0 \rightarrow c_0 \stackrel{r}{\vdash} c_1 :: \underline{b}_0 \rightarrow \underline{d}_0 \stackrel{r}{\vdash} \underline{d}_1 :: c_1 \rightarrow \underline{b}_0 \stackrel{r}{\vdash} \underline{b}_1 :: b_1 \rightarrow \underline{d}_1 \stackrel{r}{\vdash} \underline{d}_2 \end{array}$

Static analysis: successive reachability

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Successive reachability of processes:

Static analysis: successive reachability

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Successive reachability of processes:

Static analysis: successive reachability

[Paulevé et al. in Mathematical Structures in Computer Science, 2012]

Successive reachability of processes:

Sufficient condition:

- no cycle
- each objective has a solution

Sufficient condition:

- no cycle
- each objective has a solution

R is true

Necessary condition:

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process → follow all objectives

Necessary condition:

There exists a traversal with no cycle

- objective → follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

Necessary condition:

There exists a traversal with no cycle

- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

R is false

Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

Inconclusive

Static Analysis: Fixed Points

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Fixed point = state where no action can be fired

 \rightarrow avoid couples of processes bounded by an action

Static Analysis: Fixed Points

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

- \rightarrow avoid couples of processes bounded by an action
- $\rightarrow \text{Hitless Graph}$

Static Analysis: Fixed Points

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow **n-cliques** = fixed points

Static Analysis: Fixed Points

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow n-cliques = fixed points

Static Analysis: Fixed Points

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow **n-cliques** = fixed points

Static Analysis: Fixed Points

[Paulevé et al. in Transactions on Computational Systems Biology, 2011]

Fixed point = state where no action can be fired

- \rightarrow avoid couples of processes bounded by an action
- \rightarrow Hitless Graph \rightarrow **n-cliques** = fixed points

Exponential complexity w.r.t. the number of sorts