
Efficient analysis on very large models

Maxime Folschette
LUNAM Université, École Centrale de Nantes, IRCCyN UMR CNRS 6597

(Institut de Recherche en Communications et Cybernétique de Nantes),
1 rue de la Noë, 44321 Nantes, France.

Maxime.Folschette@irccyn.ec-nantes.fr

Joint work with: Loïc Paulevé, Morgan Magnin, Olivier Roux

Abstract
The Process Hitting is a recently introduced framework to model concurrent processes. It models

a finite set of components gathering several local states, with a particular form for the actions. In this
paper, we define the reachability problem that aims at deciding if, starting from a given initial state, it
is possible to reach a given local state. We also explain the static analysis method that was developed
to answer to such problems in polynomial time, instead of the exponential complexity of the usual
model checkers that apply a brute force approach. Our method thus answers in hundredths of a
second on models with hundreds of components, but at the price of being sometimes inconclusive.

1 Introduction

Creating a coherent model from an existing system is a very challenging task, but analyzing may turn
out to be even harder. If we focus on discrete modeling, this kind of problems is recurrent. In biology,
for example, it is rather common to build models using a series of local experiment in order to determine
the interactions between several components of the system (genes, proteins, metabolites. . .). To achieve
this, experimenters proceed to gene knockouts (that is, they prevent some genes to express and stop the
production of the related protein) and then use microarrays to measure the concentration of each other
proteins. The result of such in vivo studies is a model that can gather up to hundreds of components,
but several models of this kind can be also combined into a more general pathway, which can contain
thousands of components.

The problem of being able to efficiently study these models immediately emerges. Formal model
checkers usually have to compute the whole dynamics of the model in order to analyze and confront it
to good properties, often expressed in temporal logics. But the computing of a state graph (even partial)
is of exponential complexity, thus preventing the application of these methods to large models. Some
results allow to statically derive some results given the structure of the model. For example, the presence
of some circuits in the regulations between genes is a necessary condition for interesting behaviors such
as oscillations [1]. Although such methods can be of interest, they do not allow precise analysis of the
dynamics in order to validate the functionality of a model or predict in vivo behaviors.

In this paper we present an efficient method to compute a specific problem of reachability, that
consists of checking if, starting from a given initial state of the system, a given component can reach
a certain local state. This question is interesting to determine if, for instance, given a configuration of
inputs, a given output can be activated or not. The analysis we present here is applied to a specific
restriction of synchronous automata networks, called Process Hitting [2]. The purpose of this formalism
is to model a finite set of local levels, contained into a finite set of components; actions are used to

2 M. Folschette, L. Paulevé, M. Magnin, O. Roux

change the local level of a component, and can be triggered by at most one other local level of another
component. Although originally designed for large biological networks, this formalism is general enough
to represent any discrete system. The particular form of its actions allows an efficient analysis of the
dynamics [3, 4] that we present in the following, which permits to answer reachability questions in
polynomial time. The main drawback of this approach is the possibility to be inconclusive although this
case did not occur on the tested examples.

2 The Process Hitting formalism

2.1 Definition

Definition 1 introduces the Process Hitting (PH) [2] which allows to model a finite number of local levels,
called processes, grouped into a finite set of components, called sorts. A process is written ai, where a is
the sort’s name, and i is the process identifier within the sort a. At any time, exactly one process of each
sort is active, and the set of active processes is called a state.

The concurrent interactions between processes are defined by a set of actions. Actions describe the
replacement of a process by another of the same sort conditioned by the presence of at most one other
process in the current state. An action is denoted by ai→ b j � bk, which is read as “ai hits b j to make it
bounce to bk”, where ai,b j,bk are processes of sorts a and b, called respectively hitter, target and bounce
of the action. We also call a self-hit any action whose hitter and target sorts are the same, that is, of the
form: ai→ ai � ak.

Definition 1 (Process Hitting). A Process Hitting is a triple (Σ,L,H):

• Σ = {a,b, . . .} is the finite set of sorts;

• L = ∏a∈Σ La is the set of states with La = {a0, . . . ,ala} the finite set of processes of sort a ∈ Σ and
la a positive integer, with a 6= b⇒ La∩Lb = /0;

• H ⊆ {ai→ b j � bk ∈ La×L2
b | (a,b) ∈ Σ2∧b j 6= bk∧a = b⇒ ai = b j} is the finite set of actions.

The set of all processes is noted: Proc = {ai ∈ La | a ∈ Σ}. Given a state s ∈ L, the process of sort a ∈ Σ

present in s is denoted by s[a]. An action h = ai→ b j � bk ∈H is playable in s if and only if s[a] = ai

and s[b] = b j. In such a case, (s · h) stands for the state resulting from the play of the action h in s,
with (s ·h)[b] = bk and ∀c ∈ Σ,c 6= b,(s ·h)[c] = s[c]. A sequence of actions δ = (h1, . . . ,h|δ |) that are
successively playable in s is called a scenario in s, and we note: (s · δ) = s · h1 · . . . · h|δ |. We denote by
Sce(s) the set of scenarios in s.

Example. Figure 1 represents a PH (Σ,L,H) with four sorts (Σ = {a,b,c,d}) and: La = {a0,a1},
Lb = {b0,b1,b2}, Lc = {c0,c1} and Ld = {d0,d1,d2}.

2.2 The reachability problem

In this paper, we focus on the reachability of a process (Definition 2), which corresponds to the question:
“Is it possible, starting from a given initial state, to play a number of actions so that a given process is
active in the resulting state?”

Definition 2 (Reachability question). If ς ∈ L is a state and ai ∈ Proc is a process, we note P(ς ,ai) the
reachability question: “Is there a scenario in ς so that, if we play all the actions of this scenario starting
from ς , ai is active in the resulting state?”; that is, in formal terms:

P(ς ,ai)≡ ∃?δ ∈ Sce(ς),(ς ·δ)[a] = ai .

Efficient analysis on very large models 3

a

0

1

b

0

1

2

d

0

1

2

c

0 1

∗

Figure 1: A PH model example with four sorts. Circles represent the processes, boxes represent the
sorts, and the actions are drawn by pairs of arrows in solid and dotted lines. The grayed processes and
the asterisk indicate an example of reachability problem P(〈a1,b0,c0,d1〉,d2) as explained in Section 2.2.

In fact, this question can be extended in several manners that will not be tackled here. The original
paper deals with the question of the successive reachability of a sequence of processes [3], in which
several processes are required to be active successively, which is useful, for example, to state that a com-
ponent can oscillate. Another interesting question is the simultaneous reachability of several processes;
the addition of priorities in the PH [4], in addition to increasing the expressivity of the formalism, allows
to easily answer this question. Finally, we note that the static analysis developed in the following sections
can also be to some extent generalized to more synchronous automata networks [5].

2.3 Overview of the solution

The method developed here relies on the approximation of the dynamics of a PH model, instead of
computing the exact dynamics, which requires an exponential time and memory usage in the size of the
model. Thus, the static analysis we propose only focuses on local dynamics of the model, that is to say,
only computes the dynamics of single sorts each time it is necessary. This approximation is based on
the fact that an action ai→ b j � bk can only be triggered by (at most) a process ai of another sort (in the
case where ai 6= b j). For example, solving P(ς ,bk) would simply require to recursively solve P(ς ,ai)
if ς [b] = b j. In the general case, several actions are needed but the idea is the same. This drastically
drops the complexity of the method to an almost polynomial complexity in the number of sorts in the
whole model, allowing to answer reachability questions in less than a second on models with hundreds
or thousands of sorts.

However, an approximation does not come without drawbacks. Our method relies on two approxima-
tions: the under-approximation Q is a sufficient condition to answer “Yes” to the reachability question,
and the over-approximation R is a necessary condition, used to answer “No”. Indeed, instead of directly
checking a given reachability question P(ς ,ai), we check Q and R, which is easier as explained above,
and use the fact that Q⇒ P(ς ,ai)⇒ R. But in the case where Q is false and R is true, the answer turns
out to be “Inconclusive”, and classical model checking techniques have to be used. Nevertheless, our
method has always been conclusive on the examples tested in [3].

4 M. Folschette, L. Paulevé, M. Magnin, O. Roux

3 Graphs of local causality

The approximations developed in [3, 4] rely on the construction of graphs called graphs of local causality
(GLCs), that permit approximating the dynamics of a PH model. One graph is dedicated to the under-
approximation, while the other focuses on the over-approximation. We present an intuitive definition of
these graphs in the following, and illustrate it with the PH model of Figure 1 and the reachability question
P(ς ,d2) where ς = 〈a1,b0,c0,d1〉.

3.1 Nodes

GLCs contain process nodes, objective nodes and solution nodes as detailed below.

• Process nodes (in Proc) allow to state that the reachability of a given process is needed.

For example, for the reachability question P(ς ,d2), the process d2 will naturally be a node of the graph.
Objectives have the form: b j �∗ bk, which stands for the reachability of bk from a state where b j

is present; it is thereby a refinement of a possible process node bk in the GLC, by focusing on the
reachability of a process inside a sort from a given initial process. We denote the set of all possible
objectives as Obj = {b j �∗ bk ∈ Lb × Lb | b ∈ Σ}. An objective of the form b j �∗ b j is called trivial
because no action is needed to solve is.

• Objective nodes (in Obj) thus permit to name the source and destination processes of a local
reachability.

For example, d1 �∗ d2 denotes the reachability of d2 from the initial process of d in ς , which is d1.
Solving an objective b j �∗ bk implies to find a set of actions that locally solves it. This can be done

by analyzing all bounces and targets of actions on the sort b. and computing the paths without loops that
lead from b j to bk. Then, if a sequence of actions solving b j �∗ bk is found, we abstract it by extracting
only the hitters of the actions because they are the only requirement to play the said actions. Such an
abstracted set of hitters is called a solution, and we denote Sol =℘(Proc) the set of all possible solutions.
A solution indeed abstracts a sequence of actions because only the hitters are kept and the order of the
actions is forgotten (as sets are not ordered). The solution for trivial objectives, or objectives that require
only self-hits, is the empty set.

• Solution nodes (in Sol) are sets of processes that are required to locally solve an objective.

For example, {c1,b2} and {b1} are the two minimal solutions of the objective d1 �∗ d2 in Figure 1.

3.2 Edges

Edges in a GLC link the different nodes to their requirements. The GLC of the over-approximation is
recursively built the following way:

• A process node bk is linked to the objective of the form: (ς [b]) �∗ bk;

• An objective node is linked to all the minimal solutions that solve it;

• A solution is linked to all the processes it contains.

If a solution is the empty set, then it obviously has no successor, which terminates the recursion.
The under-approximation GLC is built in a similar fashion, but a process may be linked to several

additional objective nodes, in order to become sufficient. Indeed, if two processes of a sort b, say, b j and

Efficient analysis on very large models 5

bk are needed to solve two different objectives, then we have to ensure that b j and bk are both reachable
from the initial state process ς [b], but also that b j is reachable from bk and bk is reachable from b j. Thus,
new objectives b j �∗ bk and bk �∗ b j are added. This step is executed iteratively until a fixed point is
reached.

We note that the complexity of building these graphs is polynomial in the number of sorts and expo-
nential in the number of processes in each sort visited (due to the local solving of objectives in order to
find solutions). However, if the model comprises few processes in every sort (i.e. less that four, which
is usual in biological models), then our method can be considered almost polynomial in the number of
sorts, which is very efficient compared to other solutions.
Example. Figure 2 gives two examples of GLCs, one for the over-approximation (top) and another for
the under-approximation (bottom), both computed for two different reachability questions on the PH
model of Figure 1.

d1 �∗ d2

d2

b2 b0 �∗ b2 d1 d1 �∗ d1

b1 b0 �∗ b1 c1 c0 �∗ c1 a0 a1 �∗ a0 (⊥)

d0 �∗ d2

d2

b0 b1 �∗ b0 a1 a1 �∗ a1

b0 �∗ b0

b1 b1 �∗ b1

b0 �∗ b1 c1 c1 �∗ c1

Figure 2: (top) Over-approximation GLC for P(〈a1,b0,c0,d1〉,d2); (bottom) Under-approximation GLC
for P(〈a1,b1,c1,d0〉,d2); both computed on the PH of Figure 1. Process nodes are in boxes, solution
nodes are the small circles (and are not detailed) and objective nodes are the nodes with no border.

4 Necessary and sufficient conditions

Finally, the two computed GLCs can be used in order to conclude on the initial reachability question
P(ς ,ai) (Theorem 3 and Theorem 4). Checking these theorems is of polynomial complexity in the
number of nodes they contain, which is limited by the size of the model.
Theorem 3 (Over-approximation). If, starting from the process ai in the over-approximation GLC, there
exists no path with no loop such that, from an objective node, exactly one linked solution node is traversed
and, from any other node, all linked nodes are traversed, then P(ς ,ai) is false.
Theorem 4 (Under-approximation). If the under-approximation GLC has no cycle and all its leaves are
solution nodes, then P(ς ,ai) is true.
Example. By applying Theorem 3 on Figure 2(top), we can conclude that P(〈a1,b0,c0,d1〉,d2) is wrong
because all paths lead to a1 �∗ a0 which has no solution. Conversely, with Theorem 4 we can conclude
that P(〈a1,b1,c1,d0〉,d2) is true because all leafs of on Figure 2(bottom) are solutions.

6 M. Folschette, L. Paulevé, M. Magnin, O. Roux

5 Application to large models

The method presented here was implemented into the Pint1 library which gathers tools dedicated to PH,
and applied on four biological models as detailed in [3]. In a nutshell, all models studied have between
42 and 193 sorts, amongst them what we call inputs (resp. outputs), that is, sorts whose processes are
not the target (resp. the hitter) of any actions. For all the possible combinations of the inputs (that can be
either “active” or “inactive”) the reachability of an “active” state for each output was computed.

The implementation could answer in less than a tenth of a second for each reachability question.
These computation times were compared to the classical model checkers Biocham [6] and libDDD [7],
for which the solving of the same reachability questions took at least 1 second and in many cases did not
terminate due to lack of memory. Furthermore, our method was always conclusive, that is, Theorem 3 or
Theorem 4 could always be used in order to conclude, thus leading to no inconclusive analysis. Theses
examples prove that the approximations developed in the previous sections are very efficient and allow
an unprecedented study of very large models.

6 Conclusion

We summarized in this paper the static analysis developed in [3] and later extended in [4]. This analysis
is applicable to a class of models called Process Hitting that is a restriction of synchronous automata
networks, and aims at determining if a local state of a component in the model can be attained from a
given initial state. It consists in approximating the dynamics of the whole model by considering local
reachabilities (objectives) and sets of local state requirements (solutions) to solve them. It turns out to
be very efficient by making tractable the study of models with up to hundreds of components, while
classical model checkers take much more time of fail due to memory limitations.

References
[1] A. Richard and J.-P. Comet, “Necessary conditions for multistationarity in discrete dynamical systems,” Dis-

crete Applied Mathematics, vol. 155, no. 18, pp. 2403 – 2413, 2007.
[2] L. Paulevé, M. Magnin, and O. Roux, “Refining dynamics of gene regulatory networks in a stochastic π-

calculus framework,” in Transactions on Computational Systems Biology XIII, pp. 171–191, Springer, 2011.
[3] L. Paulevé, M. Magnin, and O. Roux, “Static analysis of biological regulatory networks dynamics using

abstract interpretation,” Mathematical Structures in Computer Science, vol. 22, no. 04, pp. 651–685, 2012.
[4] M. Folschette, L. Paulevé, M. Magnin, and O. Roux, “Under-approximation of reachability in multivalued

asynchronous networks,” Electronic Notes in Theoretical Computer Science, vol. 299, pp. 33 – 51, 2013. 4th
International Workshop on Interactions between Computer Science and Biology (CS2Bio’13).

[5] L. Paulevé, G. Andrieux, and H. Koeppl, “Under-approximating cut sets for reachability in large scale au-
tomata networks,” in Computer Aided Verification (N. Sharygina and H. Veith, eds.), vol. 8044 of Lecture
Notes in Computer Science, pp. 69–84, Springer Berlin Heidelberg, 2013.

[6] F. Fages and S. Soliman, “Formal cell biology in Biocham,” in Formal Methods for Computational Systems
Biology, pp. 54–80, Springer, 2008.

[7] J.-M. Couvreur, E. Encrenaz, E. Paviot-Adet, D. Poitrenaud, and P.-A. Wacrenier, “Data decision diagrams
for Petri net analysis,” in Application and Theory of Petri Nets 2002, vol. 2360 of Lecture Notes in Computer
Science, pp. 101–120, Springer, 2002.

1The source of Pint and the examples mentioned here are available at: http://loicpauleve.name/pint/

http://loicpauleve.name/pint/

	Introduction
	The Process Hitting formalism
	Definition
	The reachability problem
	Overview of the solution

	Graphs of local causality
	Nodes
	Edges

	Necessary and sufficient conditions
	Application to large models
	Conclusion

