

Séminaire des nouveaux arrivants MSV - 2020-01-07

Analysis and Learning of Dynamical Biological Networks: A Summary of my Works

Analyse et apprentissage de réseaux biologiques dynamiques : un résumé de mes travaux

Maxime FOLSCHETTE

maxime.folschette@centralelille.fr
http://maxime.folschette.name/

Introduction & Résumé

		Analysis of the Dynamics						
Centrale Nantes PhD thesis	$2011 \rightarrow$	Efficient reachability analysis on large networks						
	\rightarrow	Dynamical patterns enumeration with answer set						
		programming						
Univ Kassel postdoc	$^{2014}_{2015} \rightarrow$	Complex patterns enumeration with polyadic μ -calculus						
		Learning Models from Data						
Univ Nice of ATER	$^{2015}_{2016} ightarrow$	Inference of constraints on hybrid parameters						
Univ Nantes o ATER	$^{2016}_{2017} ightarrow$	Learning models from time series data						
		Learning New Knowledge from Models						
Univ Rennes postdoc	$^{2017}_{2018} ightarrow$	Computational model to study hepatocellular carcinoma progression						
CNRS/LS2N opostdoc	$^{2018}_{2019} ightarrow$	Integrate heterogeneous clinical, genetic, imaging data with semantic web in order to learn variables of interest						
Centrale Lille e maître de conférences	2019							

Maxime FOLSCHETTE

Frameworks

@ 2012 Pearson Education, Inc.

Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

• A set of components $N = \{a, b, z\}$

Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

- A set of components $N = \{a, b, z\}$
- A discrete domain for each component dom(a) = [0; 2]۲

${\sf Discrete\ Networks\ /\ Thomas\ Modeling}$

[Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

- A set of components $N = \{a, b, z\}$
- A discrete domain for each component dom(a) = [0; 2]
- Discrete parameters / evolution functions $f^a: S \to dom(a)$

Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

- A set of components $N = \{a, b, z\}$
- A discrete domain for each component dom(a) = [0; 2]
- Discrete parameters / evolution functions f^a : S → dom(a)
- Signs & thresholds on the edges (redundant) $a \xrightarrow{2+} z$

а	f ^b	z	b	fª	а	b	f ^z
0	0	0	0	1	0	0	0
1	1	0	1	0	0	1	0
2	1	1	0	1	1	0	0
		1	1	2	1	1	0
					2	0	0
					2	1	1

Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

- A set of components $N = \{a, b, z\}$
- A discrete domain for each component dom(a) = [0; 2]
- Discrete parameters / evolution functions f^a : S → dom(a)
- Signs & thresholds on the edges (redundant) $a \xrightarrow{2+} z$

Semantics = From this information, what is (are) the next state(s)?

Asynchronous Automata Networks (AAN)

Asynchronous Automata Networks (AAN)

Asynchronous Automata Networks (AAN)

Asynchronous Automata Networks (AAN)

Asynchronous Automata Networks (AAN)

Asynchronous Automata Networks (AAN)

[Paulevé et al., Transactions on Computational Systems Biology, 2011] [Folschette et al., Theoretical Computer Science, 2015a] Model from [François et al., Molecular Systems Biology, 2007]

Semantics = How to combine actions to compute the next state(s)?

10 11

00 01 Synchronous Generaliz

focal point (11)10

Synchronous

Asynchronous

Generalized

• Stable state = state with no successors

- Stable state = state with no successors
- **Complex attractor** = minimal loop or composition of loops from which the dynamics cannot escape

- Stable state = state with no successors
- **Complex attractor** = minimal loop or composition of loops from which the dynamics cannot escape
- Reachability = from 201, can I reach 000?

Combinatorial explosion

Translation of AAN models

[Folschette et al., Computational Methods in Systems Biology, 2012]

Before: **Process Hitting** Efficient but recent

Thomas modeling Widespread & readable

Translation of AAN models

[Folschette et al., Computational Methods in Systems Biology, 2012]

Before: **Process Hitting** Efficient but recent

Thomas modeling Widespread & readable

Translation of AAN models

[Folschette et al., Computational Methods in Systems Biology, 2012]

Before: **Process Hitting** Efficient but recent **Thomas modeling** Widespread & readable

Towards AANs [Folschette *et al.*, *CS2Bio'13*, 2013]

Before: **Process Hitting** Loose behavior

Thomas modeling Expected behavior
Analysis and Learning of Dynamical Biological Networks o Frameworks

Towards AANs [Folschette *et al.*, *CS2Bio'13*, 2013]

Maxime FOLSCHETTE

Analysis of the Dynamics

Efficient reachability analysis on large networks

Approximations of the Dynamics

- Directly checking R is hard (exponential)
- Rather check approximations P and Q so that: P ⇒ R ⇒ Q so that computing P and Q is faster (roughly polynomial)

Approximations of the Dynamics

- Directly checking R is hard (exponential)
- Rather check approximations P and Q so that: P ⇒ R ⇒ Q so that computing P and Q is faster (roughly polynomial)

Approximations of the Dynamics

- Directly checking R is hard (exponential)
- Rather check approximations P and Q so that: P ⇒ R ⇒ Q so that computing P and Q is faster (roughly polynomial)

Approximations of the Dynamics

- Directly checking R is hard (exponential)
- Rather check approximations P and Q so that: P ⇒ R ⇒ Q so that computing P and Q is faster (roughly polynomial)

Approximations of the Dynamics

- Directly checking R is hard (exponential)
- Rather check approximations P and Q so that: P ⇒ R ⇒ Q so that computing P and Q is faster (roughly polynomial)

Approximations of the Dynamics

- Directly checking R is hard (exponential)
- Rather check approximations P and Q so that: P ⇒ R ⇒ Q so that computing P and Q is faster (roughly polynomial)

Approximations of the Dynamics

- Directly checking R is hard (exponential)
- Rather check approximations P and Q so that: P ⇒ R ⇒ Q so that computing P and Q is faster (roughly polynomial)

Approximations of the Dynamics

- Directly checking R is hard (exponential)
- Rather check approximations P and Q so that: P ⇒ R ⇒ Q so that computing P and Q is faster (roughly polynomial)

Approximations of the Dynamics

- Directly checking R is hard (exponential)
- Rather check approximations P and Q so that: P ⇒ R ⇒ Q so that computing P and Q is faster (roughly polynomial)

Approximations of the Dynamics

- Directly checking R is hard (exponential)
- Rather check approximations P and Q so that: P ⇒ R ⇒ Q so that computing P and Q is faster (roughly polynomial)

${\sf P}$ is true $\Rightarrow {\sf R}$ is true

 ${\sf P}$ is true $\Rightarrow {\sf R}$ is true

 ${\sf P}$ is true $\Rightarrow {\sf R}$ is true

 ${\sf P}$ is true $\Rightarrow {\sf R}$ is true

 ${\sf P}$ is true $\Rightarrow {\sf R}$ is true

 ${\sf P}$ is true $\Rightarrow {\sf R}$ is true

 $c_0 \longmapsto c_0 \vdash^* c_0 \to \bigcirc -$

P is true \Rightarrow **R** is true

Séminaire MSV - 2020-01-07

Ø

P is true \Rightarrow **R** is true

15/37

Implementation of the Abstract Interpretation

[Folschette et al., Theoretical Computer Science, 2015b]

Complexity:

- Computation of the local causality graph:
 - Polynomial in the number of automata
 - Exponential in the number of local states of each automata (usually low)
- Check of the sufficient condition:
 - Polynomial in the size of the abstract graph
- Enumeration of the subsets of solutions, if needed:
 - Exponential in the size of the abstract graph

$\begin{array}{|c|c|c|c|c|c|c|} \hline Model & Automata & Actions & States & libddd^1 & GINsim^2 & PINT^3 \\ \hline egfr20 & 35 & 670 & 2^{64} & <1s & 0.02s \\ \hline tcrsig40 & 54 & 301 & 2^{73} & \infty & 0.02s \\ \hline tcrsig94 & 133 & 1124 & 2^{194} & [>1min - \infty] & 0.03s \\ \hline egfr104 & 193 & 2356 & 2^{320} & [>1min - \infty] & 0.16s \\ \hline \end{array}$

Very efficient on biological networks

¹ LIP6/Move [Couvreur et al., Lecture Notes in Computer Science, 2002]

² TAGC/IGC [Chaouiya, Naldi, Thieffry, Methods in Molecular Biology, 2012]

³ Loïc Paulevé [Paulevé, Computational Methods for Systems Biology, 2017]

egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]

egfr104 : Epithelial Growth Factor Receptor (104 components) [Samaga et al., 2009]

tcrsig40 : T-Cell Receptor (40 components) [Klamt et al., 2006]

tcrsig94 : T-Cell Receptor (94 components) [Saez-Rodriguez et al., 2007]

Maxime FOLSCHETTE

Implementation of the Abstract Interpretation

[Folschette et al., Theoretical Computer Science, 2015b]

Complexity:

- Computation of the local causality graph:
 - Polynomial in the number of automata
 - Exponential in the number of local states of each automata (usually low)
- Check of the sufficient condition:
 - Polynomial in the size of the abstract graph
- Enumeration of the subsets of solutions, if needed:
 - Exponential in the size of the abstract graph

Model	Automata	Actions	States	libddd ¹	GINsim ²	PINT ³
egfr20	35	670	2 ⁶⁴		<1s	0.02s
tcrsig40	54	301	2 ⁷³		∞	0.02s
tcrsig94	133	1124	2 ¹⁹⁴	$[>1min - \infty]$		0.03s
egfr104	193	2356	2 ³²⁰	$[>1min - \infty]$		0.16s

Very efficient on biological networks

¹ LIP6/Move [Couvreur et al., Lecture Notes in Computer Science, 2002]

² TAGC/IGC [Chaouiya, Naldi, Thieffry, Methods in Molecular Biology, 2012]

³ Loïc Paulevé [Paulevé, Computational Methods for Systems Biology, 2017]

egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]

egfr104 : Epithelial Growth Factor Receptor (104 components) [Samaga et al., 2009]

tcrsig40 : T-Cell Receptor (40 components) [Klamt et al., 2006]

tcrsig94 : T-Cell Receptor (94 components) [Saez-Rodriguez et al., 2007]

Maxime FOLSCHETTE

Analysis of the Dynamics

Dynamical Patterns Enumeration with Answer Set Programming

Using Answer Set Programming for Model-Checking

Useful when:

- The abstract method is inconclusive
- Looking for complex patterns (attractors)
- Using a different update dynamics (synchronous)

Idea: Go back to an exhaustive analysis, but with heuristics

- \Rightarrow Answer Set Programming
- \Rightarrow Clingo grounder + solver (Potassco project)

Approach:

- 1) Describe the problem
- 2) Enumerate all candidate solutions
- 3) Filter out unwanted results (not part of the final solution)

Answer Set Programming Concepts

Answer Set Programming (ASP): Declarative & logic programming

- not A_i is true if there is no proof of A_i (negation by failure)
- If *body* is true, then *head* must be true (logical consequence)
- We search for minimal answer sets (there can be 0, 1, many)

```
Fact: head \leftarrow \top. • head is always true
```

Constraint: $\perp \leftarrow body$.

• Invalidate this answer set if *body* is true

 Describe the problem with facts and rule node(a). node(b). node(c). edge(a, b). edge(b, c). edge(a, c). edge(X, Y) ← edge(Y, X).

Answer Set Programming Concepts

Answer Set Programming (ASP): Declarative & logic programming

- **not** A_i is true if there is no proof of A_i (negation by failure)
- If *body* is true, then *head* must be true (logical consequence)
- We search for minimal answer sets (there can be 0, 1, many)

Fact: *head* $\leftarrow \top$.

head is always true

Constraint: $\perp \leftarrow body$.

Invalidate this answer set if body is true

 Describe the problem with facts and rule node(a). node(b). node(c). edge(a, b). edge(b, c). edge(a, c). edge(X, Y) ← edge(Y, X).

Answer Set Programming Concepts

Answer Set Programming (ASP): Declarative & logic programming

- **not** A_i is true if there is no proof of A_i (negation by failure)
- If *body* is true, then *head* must be true (logical consequence)
- We search for minimal answer sets (there can be 0, 1, many)

Fact: head.

head is always true

Constraint: $\perp \leftarrow body$.

Invalidate this answer set if body is true

 Describe the problem with facts and rule node(a). node(b). node(c). edge(a, b). edge(b, c). edge(a, c). edge(X, Y) ← edge(Y, X).

Answer Set Programming Concepts

Answer Set Programming (ASP): Declarative & logic programming

- **not** A_i is true if there is no proof of A_i (negation by failure)
- If *body* is true, then *head* must be true (logical consequence)
- We search for minimal answer sets (there can be 0, 1, many)

Fact: head.

head is always true

Constraint: $\perp \leftarrow body$.

Invalidate this answer set if body is true

 Describe the problem with facts and rules node(a). node(b). node(c).
 edge(a, b). edge(b, c). edge(a, c).
 edge(X, Y) ← edge(Y, X).

Answer Set Programming Concepts

Answer Set Programming (ASP): Declarative & logic programming

- **not** A_i is true if there is no proof of A_i (negation by failure)
- If *body* is true, then *head* must be true (logical consequence)
- We search for minimal answer sets (there can be 0, 1, many)

Fact: head.

head is always true

Constraint: $\perp \leftarrow body$.

• Invalidate this answer set if body is true

1) **Describe** the problem with facts and rules node(a). node(b). node(c). edge(a, b). edge(b, c). edge(a, c). $edge(X, Y) \leftarrow edge(Y, X)$.

Answer Set Programming Concepts

Answer Set Programming (ASP): Declarative & logic programming

- **not** A_i is true if there is no proof of A_i (negation by failure)
- If *body* is true, then *head* must be true (logical consequence)
- We search for minimal answer sets (there can be 0, 1, many)

Fact: head.

Constraint: $\bot \leftarrow body$.

• Invalidate this answer set if body is true

 Describe the problem with facts and rules node(a). node(b). node(c). edge(a, b). edge(b, c). edge(a, c). edge(X, Y) ← edge(Y, X).

head is always true

Answer Set Programming Concepts

Enumeration: *atom* : *criterion*

• Enumerates all atoms of the form *atom* according to *criterion*

Cardinalities: *min* { *atom* : *criterion* } *max* \leftarrow *body*

- Keep between *min* and *max* possibilities
- Creates as many answer sets as there are combinations

2) Enumerate of all candidate solutions using cardinalities

1 { attrib(X, C) : color(C) } 1 \leftarrow node(X).

Answer set 1: attrib(b,red) attrib(c,red) attrib(a,red) Answer set 2: attrib(b,red) attrib(c,red) attrib(a,blue) Answer set 3: attrib(b,red) attrib(c,green) attrib(a,blue)

Answer Set Programming Concepts

Enumeration: atom : criterion

• Enumerates all atoms of the form *atom* according to *criterion*

Cardinalities: $min \{ atom : criterion \} max \leftarrow body.$

- Keep between *min* and *max* possibilities
- Creates as many answer sets as there are combinations

Enumerate of all candidate solutions using cardinalities

color(red). color(green). color(blue). 1 { attrib(X, C) : color(C) } 1 \leftarrow node(X).

Answer set 1: attrib(b,red) attrib(c,red) attrib(a,red) Answer set 2: attrib(b,red) attrib(c,red) attrib(a,blue) Answer set 3: attrib(b,red) attrib(c,green) attrib(a,blue)

Answer Set Programming Concepts

Enumeration: atom : criterion

• Enumerates all atoms of the form *atom* according to *criterion*

Cardinalities: $min \{ atom : criterion \} max \leftarrow body.$

- Keep between *min* and *max* possibilities
- Creates as many answer sets as there are combinations

2) Enumerate of all candidate solutions using cardinalities color(red). color(green). color(blue).
1 { attrib(X, C) : color(C) } 1 ← node(X).

Answer set 1: attrib(b,red) attrib(c,red) attrib(a,red) Answer set 2: attrib(b,red) attrib(c,red) attrib(a,blue) Answer set 3: attrib(b,red) attrib(c,green) attrib(a,blue)

Answer Set Programming Concepts

3) Filter out the undesired candidates using constraints

$\perp \leftarrow attrib(X, C), attrib(Y, C), edge(X, Y).$

Answer	set	1:	<pre>attrib(b,green) attrib(c,blue) attrib(a,red)</pre>
Answer	set	2:	<pre>attrib(b,green) attrib(c,red) attrib(a,blue)</pre>
Answer	set	3:	<pre>attrib(b,blue) attrib(c,green) attrib(a,red)</pre>
Answer	set	4:	<pre>attrib(b,blue) attrib(c,red) attrib(a,green)</pre>
Answer	set	5:	<pre>attrib(b,red) attrib(c,green) attrib(a,blue)</pre>
Answer	set	6:	<pre>attrib(b,red) attrib(c,blue) attrib(a,green)</pre>

Analysis and Learning of Dynamical Biological Networks o Dynamical patterns enumeration with ASP

Steady States

[Ben Abdallah et al., IEEE Int. Conf. on Bioinformatics and Biomedicine, 2015]

Steady States Enumeration (fixed points)

- 1) Describe the raw model with facts (automata, actions, playability)
- 2) Enumerate all possible states
- 3) Filter out states where at least one action is playable

Note: Identical for both synchronous and asynchronous semantics \rightarrow Consistent with existing results on steady states

Analysis and Learning of Dynamical Biological Networks o Dynamical patterns enumeration with ASP

Reachability & Attractors

[Ben Abdallah et al., IEEE Int. Conf. on Bioinformatics and Biomedicine, 2015] [Ben Abdallah et al., Algorithms for Molecular Biology, 2017]

Reachability analysis (reaching a given state)

- Describe the raw model with facts (automata, actions, initial states, targets)
- 2) Develop the dynamics:
 - [a] describe playability with rules
 - [b] enumerate potential futures with cardinalities and constraints
- 3) Filter out paths that don't contain the target state

Attractors Enumeration (find all smallest terminal components)

3) Filter out paths that are not cyclic and that can be escaped

Note: [a] can be adapted to any semantics

- \rightarrow Already tested with synchronous & asynchronous
- \rightarrow Other possible: general, with delay, with memory...

Analysis and Learning of Dynamical Biological Networks \circ Dynamical patterns enumeration with ASP

Conclusion on ASP for Model-Checking

[Ben Abdallah et al., IEEE Int. Conf. on Bioinformatics and Biomedicine, 2015] [Ben Abdallah et al., Algorithms for Molecular Biology, 2017]

- Incremental approach (size of the paths)
- Still computational

Mode	ls	Stable states	Reachability analysis			
Name	Size	ASP	libddd ¹	GINsim ²	ASP	
egfr20	20	0.017s	1min 55s	2min 32s	12s	
tcrsig40	40	0.021s	∞	∞	4min 28s	

¹ LIP6/Move [Couvreur et al., Lecture Notes in Computer Science, 2002]

² TAGC/IGC [Chaouiya, Naldi, Thieffry, Methods in Molecular Biology, 2012]

egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]

tcrsig40 : T-Cell Receptor (40 components) [Klamt et al., 2006]

Cons:

Analysis and Learning of Dynamical Biological Networks o Dynamical patterns enumeration with ASP

Conclusion on ASP for Model-checking

[Ben Abdallah et al., Algorithms for Molecular Biology, 2017]

		Attractors enumeration					
Models		asynchronous scheme		synchronous scheme			
(Size)	n	$\Delta t \ (ms)$	∃?A	$\Delta t \text{ (ms)}$	∃? A		
Lambda	2	14	yes	14	yes		
phage	10	1,352	no	842	no		
(4)	20	15,656	no	14,452	no		
	2	26	no	25	no		
Tcrsig	6	353	no	288	yes		
(40)	10	2,420	no	1,841	no		
	20	85,599	no	27,078	no		
FCF	2	38	no	36	no		
(50)	10	2,080	no	1,953	no		
(59)	20	30,861	no	29,838	no		
	2	180	no	125	yes		
	4	782	no	1,064	no		
T-helper	6	4,271	no	2,372	yes		
(101)	9	26,443	no	7,042	yes		
	12	107,358	no	28,520	yes		
	20	4,230,836 \sim 1h17	no	187,105 \sim 3min	no		

Lambda phage: Lysis/lysogenization decision in bacteriophage lambda [Thieffry & Thomas, 1995] FGF: Drosophila FGF signaling pathway [Mbodj *et al.*, 2013] T-helper: T-helper cell differentiation [Abou-Jaoudé *et al.*, 2014]

Learning Models from Data

Learning Models from Time Series Data

Learning Models from Execution Traces

Learning Models from Execution Traces

Learning Models from Execution Traces

Learning Models from Execution Traces

Learning Models from Execution Traces

Learning Models from Execution Traces

Learning Models from Execution Traces

Learning Models from Execution Traces

Learning Models from Execution Traces

Logic Rule

$$\underbrace{x_0^{\textit{val}_0}(t)}_{\textit{head}} \leftarrow \underbrace{x_1^{\textit{val}_1}(t-1) \land x_2^{\textit{val}_2}(t-1) \land \ldots \land x_n^{\textit{val}_n}(t-1)}_{\textit{body}}.$$

 \rightarrow When *body* is true, *head* is a potential outcome

 $\begin{array}{c} \left. \begin{array}{c} a^1 \leftarrow \{a^2, b^0, c^1\}.\\ \text{Examples:} \quad b^1 \leftarrow \{c^1\}.\\ c^0 \leftarrow \varnothing. \end{array} \right\rangle \text{ all match } \langle a^2, b^0, c^1 \rangle$

A rule R matches a state s iff $body \subseteq s$

ightarrow If the rule **matches** a state *s* then there exists a successor state s
ightarrow s' so that *head* $\in s'$

Logic Rule

$$\underbrace{x_{0}^{val_{0}}(t)}_{head} \leftarrow \underbrace{\{x_{1}^{val_{1}}(t-1), x_{2}^{val_{2}}(t-1), \ldots, x_{n}^{val_{n}}(t-1)\}}_{body}.$$

 \rightarrow When *body* is true, *head* is a potential outcome

 $\begin{array}{c} \left. \begin{array}{c} a^1 \leftarrow \{a^2, b^0, c^1\}.\\ \text{Examples:} \quad b^1 \leftarrow \{c^1\}.\\ c^0 \leftarrow \varnothing. \end{array} \right\rangle \text{ all match } \langle a^2, b^0, c^1 \rangle$

A rule *R* matches a state *s* iff $body \subseteq s$

ightarrow If the rule **matches** a state s then there exists a successor state s
ightarrow s' so that *head* $\in s'$

Logic Rule

ightarrow When *body* is true, *head* is a potential outcome

 $\begin{array}{c} a^{1} \leftarrow \{a^{2}, b^{0}, c^{1}\}.\\ \mathsf{Examples:} \quad b^{1} \leftarrow \{c^{1}\}.\\ c^{0} \leftarrow \varnothing. \end{array} \right\} \text{ all match } \langle a^{2}, b^{0}, c^{1} \rangle$

A rule *R* matches a state *s* iff $body \subseteq s$

ightarrow If the rule **matches** a state s then there exists a successor state s
ightarrow s' so that *head* $\in s'$

Logic Rule

$$\underbrace{x_0^{\mathsf{val}_0}}_{\mathsf{head}} \leftarrow \underbrace{\{ \ x_1^{\mathsf{val}_1}, \ x_2^{\mathsf{val}_2}, \ \dots, \ x_n^{\mathsf{val}_n} \} }_{\mathsf{body}}.$$

\rightarrow When *body* is true, *head* is a potential outcome

 $\begin{array}{c} a^{1} \leftarrow \{a^{2}, b^{0}, c^{1}\}.\\ \mathsf{Examples:} \quad b^{1} \leftarrow \{c^{1}\}.\\ c^{0} \leftarrow \varnothing. \end{array} \right\rangle \text{ all match } \langle a^{2}, b^{0}, c^{1} \rangle$

A rule R matches a state s iff $body \subseteq s$

ightarrow If the rule **matches** a state *s* then there exists a successor state s
ightarrow s' so that *head* $\in s'$

Logic Rule

$$\underbrace{x_0^{\mathsf{val}_0}}_{\mathsf{head}} \leftarrow \underbrace{\{x_1^{\mathsf{val}_1}, x_2^{\mathsf{val}_2}, \ldots, x_n^{\mathsf{val}_n}\}}_{\mathsf{body}}.$$

ightarrow When *body* is true, *head* is a potential outcome

 $\begin{array}{c} \mathsf{a}^1 \leftarrow \{ \mathsf{a}^2, \mathsf{b}^0, \mathsf{c}^1 \}.\\ \mathsf{b}^1 \leftarrow \{ \mathsf{c}^1 \}.\\ \mathsf{c}^0 \leftarrow \varnothing. \end{array} \right\} \text{ all match } \langle \mathsf{a}^2, \mathsf{b}^0, \mathsf{c}^1 \rangle \\ \end{array}$

A rule R matches a state s iff $body \subseteq s$

ightarrow If the rule **matches** a state *s* then there exists a successor state s
ightarrow s' so that *head* $\in s'$

Logic Rule

$$\underbrace{x_0^{\mathsf{val}_0}}_{\mathsf{head}} \leftarrow \underbrace{\{x_1^{\mathsf{val}_1}, x_2^{\mathsf{val}_2}, \dots, x_n^{\mathsf{val}_n}\}}_{\mathsf{body}}.$$

ightarrow When *body* is true, *head* is a potential outcome

 $\left.\begin{array}{l} \mathsf{a}^1 \leftarrow \{a^2, b^0, c^1\}.\\ \mathsf{Examples:} \quad \begin{array}{c} b^1 \leftarrow \{c^1\}.\\ c^0 \leftarrow \varnothing. \end{array}\right\} \text{ all match } \langle a^2, b^0, c^1\rangle \\ \end{array}\right\}$

A rule R matches a state s iff $body \subseteq s$

ightarrow If the rule **matches** a state s then there exists a successor state s
ightarrow s' so that $head\in s'$

Logic Rule

$$\underbrace{x_0^{\mathsf{val}_0}}_{\mathsf{head}} \leftarrow \underbrace{\{x_1^{\mathsf{val}_1}, x_2^{\mathsf{val}_2}, \dots, x_n^{\mathsf{val}_n}\}}_{\mathsf{body}}.$$

ightarrow When *body* is true, *head* is a potential outcome

$$\left.\begin{array}{c} \mathsf{a}^1 \leftarrow \{a^2, b^0, c^1\}.\\ \mathsf{Examples:} \quad b^1 \leftarrow \{c^1\}.\\ c^0 \leftarrow \varnothing.\end{array}\right\} \text{ all match } \langle a^2, b^0, c^1\rangle$$

A rule *R* matches a state *s* iff $body \subseteq s$

 \rightarrow If the rule **matches** a state *s* then there exists a successor state $s \rightarrow s'$ so that *head* $\in s'$

Discrete model:

+ Parameters or logic gates

$$b(1) \leftarrow a(1).$$

 $b(1) \leftarrow a(2).$
 $b(0) \leftarrow a(0).$

$$egin{aligned} & z(1) \leftarrow a(2) \wedge b(1). \ & z(0) \leftarrow a(0). \ & z(0) \leftarrow a(1). \ & z(0) \leftarrow b(0). \end{aligned}$$

Discrete model:

+ Parameters or logic gates Logic program:

$$b(1) \leftarrow a(1).$$

 $b(1) \leftarrow a(2).$
 $b(0) \leftarrow a(0).$

$$egin{aligned} & z(1) \leftarrow a(2) \wedge b(1). \ & z(0) \leftarrow a(0). \ & z(0) \leftarrow a(1). \ & z(0) \leftarrow b(0). \end{aligned}$$

Discrete model:

+ Parameters or logic gates Logic program:

$$b(1) \leftarrow a(1).$$

 $b(1) \leftarrow a(2).$
 $b(0) \leftarrow a(0).$

$$egin{aligned} &z(1)\leftarrow a(2)\wedge b(1).\ &z(0)\leftarrow a(0).\ &z(0)\leftarrow a(1).\ &z(0)\leftarrow b(0). \end{aligned}$$

Discrete model:

+ Parameters or logic gates

Logic program:

$$b(1) \leftarrow a(1).$$

 $b(1) \leftarrow a(2).$
 $b(0) \leftarrow a(0).$

$$egin{aligned} &z(1)\leftarrow a(2).\ &z(1)\leftarrow b(1).\ &z(0)\leftarrow a(1)\wedge b(0).\ &z(0)\leftarrow a(0)\wedge b(0). \end{aligned}$$

Discrete model:

+ Parameters or logic gates Logic program:

$$b(1) \leftarrow a(1).$$

 $b(1) \leftarrow a(2).$
 $b(0) \leftarrow a(0).$

$$egin{aligned} &z(1)\leftarrow a(2).\ &z(1)\leftarrow b(1).\ &z(0)\leftarrow a(1)\wedge b(0).\ &z(0)\leftarrow a(0)\wedge b(0). \end{aligned}$$

GULA: Algorithm

- Start from the most general program: {x^{val} ← Ø. | x ∈ V ∧ val ∈ dom(x)}
- For each state *s*, for each rule *R* that allows a behavior not observed after *s*:

 \rightarrow Make minimal revisions on *R* (add an atom not in *s*)

• Remove all rules that are not the most general

Formally proved with transitions generated in **synchronous**, **asynchronous** and **generalized** semantics; should also work for a wider class of semantics

But what if the semantics "hides" some parts of the program?

ightarrow We should learn the semantics too! (In progress...)

GULA: Algorithm

- Start from the most general program: {x^{val} ← Ø. | x ∈ V ∧ val ∈ dom(x)}
- For each state *s*, for each rule *R* that allows a behavior not observed after *s*:

 \rightarrow Make minimal revisions on *R* (add an atom not in *s*)

• Remove all rules that are not the most general

Formally proved with transitions generated in **synchronous**, **asynchronous** and **generalized** semantics; should also work for a wider class of semantics

But what if the semantics "hides" some parts of the program?

 \rightarrow We should learn the semantics too! (In progress...)

(Continuum) Logic Program

(Continuum) Logic Program

(Continuum) Logic Program

 $z([0.8,1]) \leftarrow a([0.3,0.6]) \land b([0.5,1]).$

Maxime FOLSCHETTE

 $z(1) \leftarrow a(2) \wedge b(1).$

(Continuum) Logic Program

ACEDIA: Refinement of the Continuum Logic Program

INPUT: A set of time series data

OUTPUT:

A continuum logic program Equivalent to a regulatory network

$$\begin{array}{l} \rho([0,0.5]) \leftarrow q([0,0.5]).\\ \rho([0.5,1]) \leftarrow q([0.5,1]).\\ q([0,0.5]) \leftarrow \rho([0,0.5]) \wedge r([0.5,1]).\\ q([0.5,1]) \leftarrow \rho([0.5,1]) \wedge r([0.5,1]).\\ r([0,0.5]) \leftarrow \rho([0.5,1]).\\ r([0.5,1]) \leftarrow \rho([0,0.5]). \end{array}$$

- Pros: No discretization of the data
- **Cons:** Sensitive to noise, synchronous semantics only

Maxime FOLSCHETTE

Séminaire MSV - 2020-01-07

ACEDIA: Refinement of the Continuum Logic Program

INPUT: A set of time series data

OUTPUT:

A continuum logic program Equivalent to a regulatory network

$$\begin{split} \rho([0,0.5]) &\leftarrow q([0,0.5]).\\ \rho([0.5,1]) &\leftarrow q([0.5,1]).\\ q([0,0.5]) &\leftarrow \rho([0,0.5]) \wedge r([0.3,1]).\\ q([0.5,1]) &\leftarrow \rho([0.5,1]) \wedge r([0.3,1]).\\ r([0,0.3]) &\leftarrow \rho([0.5,1]).\\ r([0.3,1]) &\leftarrow \rho([0,0.5]). \end{split}$$

- Pros: No discretization of the data
- **Cons:** Sensitive to noise, synchronous semantics only

Maxime FOLSCHETTE

Séminaire MSV - 2020-01-07

ACEDIA: Refinement of the Continuum Logic Program

INPUT: A set of time series data

OUTPUT:

A continuum logic program Equivalent to a regulatory network

$$\begin{array}{l} p([0,0.5]) \leftarrow q([0,0.5]).\\ p([0.5,1]) \leftarrow q([0.5,1]).\\ q([0,0.5]) \leftarrow p([0,0.5]) \wedge r([0.3,1]).\\ q([0.5,1]) \leftarrow p([0.5,1]) \wedge r([0.3,1]).\\ r([0,0.3]) \leftarrow p([0.5,1]).\\ r([0.3,1]) \leftarrow p([0,0.5]). \end{array}$$

- Pros: No discretization of the data
- **Cons:** Sensitive to noise, synchronous semantics only
Conclusion: Learning from Time Series

Challenges:

- Discretization → ACEDIA
 A different discretization gives a statement
 - A different discretization gives a different result
- Partial data \rightarrow LUST

Predict parts of the system

- Unknown semantics → GULA Measurment-dependent
- Heterogeneous "semantics" → Ongoing...
 Organism-dependent
- Changing behavior → Ongoing...
 Stochasticity
- Chronometry over chronology Learn time delays
- Learn from real data Avoid learning noise

Conclusion: Learning from Time Series

Challenges:

• Discretization \rightarrow ACEDIA

A different discretization gives a different result

• Partial data \rightarrow LUST

Predict parts of the system

- Unknown semantics → GULA Measurment-dependent
- Heterogeneous "semantics" → Ongoing...
 Organism-dependent
- Changing behavior → Ongoing...
 Stochasticity
- Chronometry over chronology Learn time delays
- Learn from real data Avoid learning noise

Conclusion: Learning from Time Series

Challenges:

• Discretization \rightarrow ACEDIA

A different discretization gives a different result

• Partial data \rightarrow LUST

Predict parts of the system

- Unknown semantics → GULA Measurment-dependent
- Heterogeneous "semantics" \rightarrow Ongoing... Organism-dependent
- Changing behavior \rightarrow Ongoing... Stochasticity
- Chronometry over chronology
 Learn time delays
- Learn from real data Avoid learning noise

Future works

Harmful Algae 72 (2018) 1-13

Contents lists available at ScienceDirect

Harmful Algae

journal homepage: www.elsevier.com/locate/hal

Realized niche analysis of phytoplankton communities involving HAB: *Phaeocystis* spp. as a case study

HARMFUL

Stéphane Karasiewicz^{a,*}, Elsa Breton^a, Alain Lefebvre^b, Tania Hernández Fariñas^c, Sébastien Lefebvre^{a,d}

⁴ Univ. Lille, CNRS, Univ. Littoral Câte d'Opule, UMR 8187, LOG Laboratoire d'Océanologie et Cáosciences, F 62930 Winnerux, France ^b Ifremer, laboratoire Environnement et ressources du centre Manche Mer du Nord, 150 quai Gambetta, BP 639, 62321 Boulogne-sur-Mer, France ^c Ifremer, Laboratoire Environnement Ressources de Normandie, Avenue du Général de Gaulie, BP 32, 14520 Port en Bessin, France

^d Ifremer, Laboratoire Ressources Halieutiques, 150 Quai Gambetta BP 699, F-62321 Boulogne sur mer, France

ARTICLE INFO

Article history: Received 9 June 2017 Received in revised form 9 December 2017 Accepted 11 December 2017 Available online xxx

Keywords: Harmful algae bloom WitOMI

ABSTRACT

The link between harmful algal blooms, phytoplankton community dynamics and global environmental change is not well understood. To tackle this challenging question, a new method was used to reveal how phytoplankton communities responded to environmental change with the occurrence of an harmful algae, using the coastal waters of the eastern English Channel as a case study. The great interannual variability in the magnitude and intensity of *Phaeocystis* spp. blooms, along with diatoms, compared to the ongoing gradual decrease in anthropogenic nutrient concentration and rebalancing of nutrient ratios; suggests that other factors, such as competition for resources, may also play an important role. A realized niche annorach was used with the Outlyion Wean Index analysis and the dynamics of the species' realized niche annorach was used with the Outlyion Wean Index analysis and the dynamics of the species' realized niche annorach was used with the Outlyion Wean Index analysis and the dynamics of the species' realized niche annorach was used with the Outlyion Wean Index analysis and the dynamics of the species' realized niche annorach was used with the Outlyion Wean Index analysis and the dynamics of the species' realized niche annorach was used with the Outlyion Wean Index analysis and the dynamics of the species' realized niche annorach was used with the Outlyion Wean Index analysis and the dynamics of the species' realized niche annorach was used with the Outlyion Wean Index analysis and the dynamics of the species' realized niche annorach was used with the Outlyion Wean Index analysis and the dynamics of the species' realized niches annorach was used with the Outlyion Wean Index analysis and the dynamics of the species' realized niches annorach was used with the Outlyion Wean Index analysis and the dynamics of the species' realized niches annorach was used with the Outlyion Wean Mean Index analysis and the dynamics of the species' realized niches and the species was and the dynamics of the speci

Future works

SEANOE Sea scientific open data editior

report problems.

SEANGE

SRN dataset - Regional Observation and Monitoring Program for Phytoplankton and Hydrology in the eastern English Channel. 1992-2016.

Date	2017-09	
Temporal extent	1992 -2016	
Author(s)	SRN - Regional Observation and Monitoring program for Phytoplankton and Hydrology in the eastern English Channel	
Contributor(s)	Lefebvre Alain [®] , Biondel Camilie, Duquesne Vincent, Hebert Pascale, Cordier Remy, Belin Catherine [®] , Huguet Antoine, Durand Gaetane, Soudant Dominique [®]	P
DOI	10.17882/50832	F
Publisher	SEANOE	
Abstract	This SRN dataset includes long-term time series on marine phytoplankton and physico-chemical measures, since 1992, along the exasten fightich Channel coast. <i>More precedy</i> , samples were collected along transects offshore Dunkerque, Boulognesur-Mer and the bay of Somme. Data are complementary to REPHY and REPHYTOX datasets. Phytoplankton data essentially cover microscopic taxonomic identifications and counts, but also pigments measures (Chlorophylle and pheopigment). Physico-chemical measures include temperature, salinay, turbidity, supended matters (organic, mineral), dissolved oxygen, dissolved longranic nutrients (ammonium, nitriterinitze) phosphare, gliaccub.	
Licence	(cc) BY	
Utilisation	Data are published without any warranty, express or implied. The user assumes all risk arising from his/her use of data. Data are intended to be research-quality and include estimates of data quality and accuracy, but its possible that these estimates or the data themselves contain errors. It is the sole responsibility of the user to assess if the data are appropriate for his/her use, and to interpret the data, data outly and data accura according Authors vectores users to ask outsions and the data.	

Click to download

Bloom of the Prymnesiophyceae Phaeocystis globosa in the harbour of Boulogne sur Mer (eastern English Channel, France)

Download metadata TXT, RIS, XLS, RTF, BIBTEX

References

Thank you

Frameworks

• Thomas modeling, asynchronous automata networks

Analysis of the Dynamics

- Efficient reachability analysis on large networks
- Dynamical patterns enumeration with answer set programming
- Complex patterns enumeration with polyadic μ-calculus

Learning Models from Data

- Inference of constraints on hybrid parameters
- Learning models from time series data

Learning New Knowledge from Models

- Computational model to study hepatocellular carcinoma progression
- Integrate heterogeneous clinical, genetic, imaging data with semantic web in order to learn variables of interest

Olivier ROUX

Morgan MAGNIN

Katsumi INOUE

Loïc PAULEVÉ

Emna BEN ABDALLAH

Tony RIBEIRO

Martin LANGE

Jonathan BEHAEGEL

Jean-Pau COMET

Carito GUZIOLOWSK

Nathalie THÉRET

Vincent LEGAGNEUX

Arnaud PORET

Lokmane CHEBOUBA

Alban GAIGNARD

Hala SKAF-MOLLI

Séminaire MSV - 2020-01-07

Olivier ROUX

Morgan MAGNIN

Katsumi INOUE

Loïc PAULEVÉ

Emna BEN ABDALLAH

Tony RIBEIRO

Martin LANGE

Jonathan BEHAEGEL

Jean-Paul COMET

Carito GUZIOLOWSKI

Nathalie THÉRET

Vincent LEGAGNEUX

Arnaud PORET

Lokmane CHEBOUBA

Alban GAIGNARD

Hala SKAF-MOLLI

Séminaire MSV - 2020-01-07

Analysis and Learning of Dynamical Biological Networks o Dynamical Analysis with µ-calculus

Analysis of the Dynamics

Using µ-calculus for Complex Dynamical Patterns Enumeration

Polyadic (modal) µ-calculus allows to manipulate several tokens in parallel

 $\varphi = p_i \mid i \leftarrow j \mid i = j \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Diamond_i \varphi \mid \Box_i \varphi \mid \mu X.\varphi \mid \nu X.\varphi \mid X$

- Modal operators: \Box ("for all successors"), \Diamond ("there exists a successor")
- Fixed points: μ (least fixed point), ν (greatest fixed point)
- Tokens (i, j) and their manipulation $(i = j \text{ and } i \leftarrow j)$

Maxime FOLSCHETTE

Polyadic (modal) µ-calculus allows to manipulate several tokens in parallel

 $\varphi = p_i \mid i \leftarrow j \mid i = j \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Diamond_i \varphi \mid \Box_i \varphi \mid \mu X.\varphi \mid \nu X.\varphi \mid X$

- Modal operators: \Box ("for all successors"), \Diamond ("there exists a successor")
- Fixed points: μ (least fixed point), ν (greatest fixed point)
- Tokens (i, j) and their manipulation $(i = j \text{ and } i \leftarrow j)$

Maxime FOLSCHETTE

Polyadic (modal) µ-calculus allows to manipulate several tokens in parallel

 $\varphi = p_i \mid i \leftarrow j \mid i = j \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Diamond_i \varphi \mid \Box_i \varphi \mid \mu X.\varphi \mid \nu X.\varphi \mid X$

- Modal operators: \Box ("for all successors"), \Diamond ("there exists a successor")
- Fixed points: μ (least fixed point), ν (greatest fixed point)
- Tokens (i, j) and their manipulation $(i = j \text{ and } i \leftarrow j)$

Maxime FOLSCHETTE

Polyadic (modal) µ-calculus allows to manipulate several tokens in parallel

 $\varphi = p_i \mid i \leftarrow j \mid i = j \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Diamond_i \varphi \mid \Box_i \varphi \mid \mu X.\varphi \mid \nu X.\varphi \mid X$

- Modal operators: \Box ("for all successors"), \Diamond ("there exists a successor")
- Fixed points: μ (least fixed point), ν (greatest fixed point)
- Tokens (i, j) and their manipulation $(i = j \text{ and } i \leftarrow j)$

Maxime FOLSCHETTE

Learning Models from Biological Data

Learning Models from Time Series Data: Complements

GULA: Algorithm

• Start from the most general program:

$$P := \{x^{val} \leftarrow \varnothing. \mid x \in V \land val \in \mathsf{dom}(x)\}$$

• For each state s:

 \rightarrow For each rule in conflict with the outcomes of s (that is, each rule R that allows a behavior not allowed after s) \rightarrow Make minimal revisions on R to prevent this conflict

Remove all rules that are not the most general

GULA: Minimal Revision of a Rule

The algorithm successively takes into account groups of transitions and performs **minimal modifications** on the program learned so far

Let R a rule in conflict with the current transitions, that is: there exists a state s so that R matches s, but $\forall s' \in S$ so that $s \to s'$, $head(R) \notin s'$ That is: R expresses a potential outcome for a variable which never happens in s

Least specialization of R by s:

 $R := head \leftarrow body$

 $L_{spe}(R,s) := \{ \textit{head} \leftarrow \textit{body} \cup \{x^{\textit{val}}\} \mid x^{\textit{val}} \notin s \land \forall \textit{val}' \in \mathbb{N}, x^{\textit{val}'} \notin \textit{body} \}$

Least revision of P by a set of transitions T:

$$L_{rev}(P,T) := (P \setminus R_P) \cup \bigcup_{R \in R_P} L_{spe}(R,s)$$

Maxime FOLSCHETTE

Scope of GULA

This learning should be independent from the semantics!

Formally proved: Compatible with transitions generated in **synchronous**, **asynchronous** and **generalized** semantics

Expectation: Compatible with a wider class of "learnable" semantics

Scope of GULA

This learning should be independent from the semantics!

Formally proved: Compatible with transitions generated in **synchronous**, **asynchronous** and **generalized** semantics

Expectation: Compatible with a wider class of "learnable" semantics

Scope of GULA

This learning should be independent from the semantics!

Formally proved: Compatible with transitions generated in **synchronous**, **asynchronous** and **generalized** semantics

Expectation: Compatible with a wider class of "learnable" semantics

Limits of our Definition of Semantics

Formally, a semantics is a function that, to each program, associates a set of transitions (with no dead-end)

```
\{\mathsf{Set of all programs}\} \ \to \ (\mathcal{S} \to \wp(\mathcal{S}) \setminus \varnothing)
```

Not constrained enough as it allows some unwanted cases:

- a semantics where all variables are always updated to 0, disregarding any actual rules
- a semantics which behaves differently on one specific program (exception)
- ightarrow The program can be "hidden" and thus cannot be learned

Outcomes:

- Semantics should take into account the given program
- We can also learn the semantics (for now, we give a characterization)

Limits of our Definition of Semantics

Formally, a semantics is a function that, to each program, associates a set of transitions (with no dead-end)

```
\{\mathsf{Set of all programs}\} \ \to \ (\mathcal{S} \to \wp(\mathcal{S}) \setminus \varnothing)
```

Not constrained enough as it allows some unwanted cases:

- a semantics where all variables are always updated to 0, disregarding any actual rules
- a semantics which behaves differently on one specific program (exception)
- ightarrow The program can be "hidden" and thus cannot be learned

Outcomes:

- Semantics should take into account the given program
- We can also learn the semantics (for now, we give a characterization)

Limits of our Definition of Semantics

Formally, a semantics is a function that, to each program, associates a set of transitions (with no dead-end)

```
\{\mathsf{Set of all programs}\} \ \to \ (\mathcal{S} \to \wp(\mathcal{S}) \setminus \varnothing)
```

Not constrained enough as it allows some unwanted cases:

- a semantics where all variables are always updated to 0, disregarding any actual rules
- a semantics which behaves differently on one specific program (exception)
- ightarrow The program can be "hidden" and thus cannot be learned

Outcomes:

- Semantics should take into account the given program
- We can also learn the semantics (for now, we give a characterization)

Learning Models from Biological Data

Inference of Constraints on Hybrid Parameters

Maxime FOLSCHETTE

 $\begin{cases} \text{Prior} \\ \text{Hybrid Hoare Logic to Infer Parameters} \\ \text{[Behaegel et al., TIME'17, 2017]} \\ \\ \text{Hybrid Hoare Logic to Infer Parameters} \\ \text{[Behaegel et al., TIME'17, 2017]} \\ \text{Hoare Logic to Infer Parameters} \\ \text{[Behaegel et al., TIME'17, 2017]} \\ \text{Hoare Logic to Infer Parameters} \\ \text{[Behaegel et al., TIME'17, 2017]} \\ \text{Hoare Logic to Infer Parameters} \\ \text{[Behaegel et al., TIME'17, 2017]} \\ \text{Hoare Logic to Infer Parameters} \\ \text{[Behaegel et al., TIME'17, 2017]} \\ \text{Hoare Logic to Infer Parameters} \\ \text{[Behaegel et al., TIME'17, 2017]} \\ \text{Hoare Logic to Infer Parameters} \\ \text{[Behaegel et al., TIME'17, 2017]} \\ \text{Hoare Logic to Infer Parameters} \\ \text{[Behaegel et al., TIME'17, 2017]} \\ \text{Hoare Logic to Infer Parameters} \\ \text{[Behaegel et al., TIME'17, 2017]} \\ \text{Hoare Logic to Infer Parameters} \\ \text{[Behaegel et al., TIME'17, 2017]} \\ \text{Hoare Logic to Infer Parameters} \\ \text{[Behaegel et al., TIME'17, 2017]} \\ \text{Hoare Logic to Infer Parameters} \\ \text{[Behaegel et al., TIME'17, 2017]} \\ \text{Hoare Logic to Infer Parameters} \\ \text{[Behaegel et al., TIME'17, 2017]} \\ \text{Hoare Logic to Infer Parameters} \\ \text{[Behaegel et al., TIME'17, 2017]} \\ \text{Hoare Logic to Infer Parameters} \\ \text{[Behaegel et al., TIME'17, 2017]} \\ \text{Hoare Logic to Infer Parameters} \\ \text{[Behaegel et al., TIME'17, 2017]} \\ \text{Hoare Logic to Infer Parameters} \\ \text{[Behaegel et al., TIME'17, 2017]} \\ \text{Hoare Logic to Infer Parameters} \\ \text{[Behaegel et al., TIME'17, 2017]} \\ \text{[Behaegel et al.,$

Maxime FOLSCHETTE

$$(((((((((\pi_{g}^{0}^{\prime} = 0.12) \land ((\pi_{pc}^{0}^{\prime} = 0.12) \land (\pi_{L}^{0}^{\prime} = 0))) \land (((\pi_{L}^{1} = 1) \land (((C_{L,\{m5\},0} > 0) \land (\pi_{L}^{1\prime} = (\pi_{L}^{\prime} - (C_{L,\{m5\},0} > 6.6))))) \land (((((T_{L_{g,c},0,0} > 0) \land (\pi_{L}^{\prime\prime}) > (\pi_{g}^{1} - (C_{g,c,0,0} < 6.6))))) \land (((\pi_{L}^{1} = (1 - \pi_{L}^{0\prime})) \land (((\pi_{g}^{1} = \pi_{g}^{0\prime}) \land ((\pi_{L}^{2} = \pi_{g}^{0\prime}) \land ((\pi_{L}^{2} = \pi_{g}^{0\prime})) \land (((\pi_{L}^{2} = \pi_{g}^{0\prime}) \land ((\pi_{L}^{2} = \pi_{g}^{0\prime})) \land ((\pi_{L}^{2} = \pi_{g}^{0\prime})) \land (((\pi_{L}^{2} = \pi_{g}^{0\prime}) \land ((\pi_{L}^{2} = \pi_{g}^{0\prime}) \land ((\pi_{L}^{2} = \pi_{g}^{0\prime})) \land (((\pi_{L}^{2} = 0) \land ((C_{L,g,0,1} < 0) \land (\pi_{L}^{2\prime} = (\pi_{L}^{2} - (C_{L,g,0,1} < 0.6))))) \land ((((C_{L,g,0,0} > 0) \land (\pi_{L}^{2\prime}) \land (\pi_{L}^{2} = \pi_{L}^{2\prime}))))) \land (((C_{L,g,0,0} < 0) \land (\pi_{L}^{2\prime}) \land (\pi_{L}^{2} = \pi_{L}^{2\prime})) \land ((\pi_{L}^{2} = 0) \land ((C_{L,g,0,0} < 0) \land (\pi_{L}^{2\prime}) \land (\pi_{L}^{2} = \pi_{L}^{2\prime}))))) \land (((\pi_{L}^{2} = 0) \land ((C_{L,g,0,0} < 0) \land (\pi_{L}^{2\prime}) \land (\pi_{L}^{2} = (C_{L,g,0,0} < 0.6))))) \land (((C_{L,g,0,0} < 0) \land (\pi_{L}^{2\prime}) \land (\pi_{L}^{2} = \pi_{L}^{2\prime})))))) \land (((\pi_{L}^{2} = 0) \land ((C_{L,g,0,0} < 0) \land (\pi_{L}^{2\prime}) \land (\pi_{L}^{2} = \pi_{L}^{2\prime})) \land ((\pi_{g}^{2} = \pi_{L}^{2\prime})) \land ((\pi_{L}^{2} = \pi_{L}^{2\prime})))))) \land ((((C_{L,g,0,0} < 0) \land (\pi_{L}^{2\prime}) \land (\pi_{L}^{2} = \pi_{L}^{2\prime}))))) \land (((C_{L,g,0,0} < 0) \land (\pi_{L}^{2\prime}) \land ((\pi_{g}^{3} = 0) \land ((C_{L,g,0,1} < 0) \land (\pi_{L}^{2\prime}) \land (\pi_{g}^{3\prime}) \land ((\pi_{g}^{3} = 0) \land ((C_{L,g,0,1} < 0) \land (\pi_{L}^{2\prime}) \land (\pi_{g}^{3\prime}) \land ((\pi_{g}^{3} = 0) \land ((C_{L,g,0,1} < 0) \land (\pi_{L}^{2\prime}) \land (\pi_{g}^{3\prime}) \land ((\pi_{g}^{3} = 0) \land ((C_{L,g,0,1} < 0) \land (\pi_{L}^{3\prime}) \land (\pi_{g}^{3\prime}) \land ((\pi_{g}^{3} = 0) \land ((C_{L,g,0,1} < 0) \land (\pi_{L}^{3\prime}) \land (\pi_{g}^{3\prime}) \land (\pi_{g}^{3} = (C_{L,g,0,1} \land L^{3}))))) \land ((((C_{L,g,0,1,1} < 0) \land (\pi_{L}^{3\prime}) \land (\pi_{g}^{3\prime}) \land (\pi_{g}^{3} = \pi_{g}^{2\prime}) \land (\pi_{g}^{3} = \pi_{g}^{3\prime}) \land (\pi_{g}^{3} =$$

Results

- Simplifications of the constraints \rightarrow Not very effective
- Using a non-linear solver: **AbSolute** \rightarrow We obtain solutions
- Results checked with a simulation:

Simulation with 1 set of compatible values

Experiments

Learning New Knowledge from Models

Computational Model to Study Hepatocellular Carcinoma Progression

Graph content:

- 3'383 nodes
- 13'771 edges
 - 11'661 activations
 - 2'110 inhibitions

1913 genes from the differential expression Only 209 are found in Kegg:

- 138 up-regulated
- 71 down-regulated
- 3174 new nodes

Nodes with up to: 92 incoming influences 79 outgoing influences \rightarrow Nodes with a lot of impact on the network

Maxime FOI SCHETTE

Graph Coloring

• Coloring = information attached to nodes about over- or under-expression

Y

= over-expressed

= under-expressed

• Provenance = experimental (expression data) & computational (inference)

Given by the experimental data

- Compute all colorings without inconsistencies
- Prediction = a node that is always colored the same

Here, only 1 prediction:

• All computed by lggy [Thiele *et al.*, *BMC Bioinformatics*, 2015] (Answer Set Programming)

Maxime FOLSCHETTE

Graph Coloring

Coloring = information attached to nodes about over- or under-expression

Y

= over-expressed

= under-expressed

• Provenance = experimental (expression data) & computational (inference)

Given by the experimental data

- Compute all colorings without inconsistencies
- Prediction = a node that is always colored the same

Here, only 1 prediction: (

 All computed by Iggy [Thiele et al., BMC Bioinformatics, 2015] (Answer Set Programming)

Maxime FOLSCHETTE

Graph Coloring

• Coloring = information attached to nodes about over- or under-expression

Y

= over-expressed

= under-expressed

• Provenance = experimental (expression data) & computational (inference)

Consistent

- Compute all colorings without inconsistencies
- Prediction = a node that is always colored the same

Here, only 1 prediction: (

 All computed by Iggy [Thiele et al., BMC Bioinformatics, 2015] (Answer Set Programming)

Maxime FOLSCHETTE

Graph Coloring

Coloring = information attached to nodes about over- or under-expression

= over-expressed

= under-expressed

• Provenance = experimental (expression data) & computational (inference)

- Compute all colorings without inconsistencies
- Prediction = a node that is always colored the same

Here, only 1 prediction: (

 All computed by Iggy [Thiele et al., BMC Bioinformatics, 2015] (Answer Set Programming)

Maxime FOLSCHETTE
Graph Coloring

 Coloring = information attached to nodes about over- or under-expression = over-expressed = under-expressed Provenance = experimental (expression data) & computational (inference) D Consistent Consistent Inconsistent

Maxime FOLSCHETTE

Séminaire MSV — 2020-01-07

Graph Coloring

• All computed by lggy [Thiele *et al.*, *BMC Bioinformatics*, 2015] (Answer Set Programming)

Maxime FOLSCHETTE

Séminaire MSV - 2020-01-07

Graph Coloring

• All computed by Iggy [Thiele *et al.*, *BMC Bioinformatics*, 2015] (Answer Set Programming)

Maxime FOLSCHETTE

Séminaire MSV - 2020-01-07

Knowledge from experiments:

- 138 up-regulated
- 71 down-regulated

Computational predictions:

92 predicted 24 non-trivial 54 predicted (33 non-trivial

70% more information compared to only knowledge from experiments

Prediction Results

Results conflicting with experimental data

Predictions which are different from differential analysis:

 BAK1_gen, BMP4_gen, CREB1_prot, EIF4EBP2_prot, IGFBP3_gen, IGFBP3_prot, NR0B2_gen, NR0B2_prot, NR1H4_gen, NR1H4_prot, NR3C2_gen, NR3C2_prot, SESN3_gen, SESN3_prot, THBS1_gen, TNFRSF10A_gen, TP53_prot

Prediction Results

Results conflicting with experimental data

Predictions which are different from differential analysis:

 BAK1_gen, BMP4_gen, CREB1_prot, EIF4EBP2_prot, IGFBP3_gen, IGFBP3_prot, NR0B2_gen, NR0B2_prot, NR1H4_gen, NR1H4_prot, NR3C2_gen, NR3C2_prot, SESN3_gen, SESN3_prot, THBS1_gen, TNFRSF10A_gen, TP53_prot

Hub example: TP53_prot

18 predictions directly depend of TP53_prot

Analysis and Learning of Dynamical Biological Networks o Clinical Knowledge Graph

Learning New Knowledge from Models

Create a Knowledge Graph of Clinical Data

INEX-MED Project

- Multiple data sources: clinical/diagnosis, imaging, microscopy, genomics
- Text/tabulated, not interoperable
- 2 use cases: intracranial aneurysm & congenital myopathies

Objectives:

- Create a general knowledge graph of Linked Data
- SPARQL queries on all sources
- Machine learning on the complete graph
- FAIR principles (Findability, Accessibility, Interoperability, Reusability)

Knowledge Graph

Project INEX-MED

